scikit-learn中的数据归一化

在机器学习使用数据归一化的时候有一个重要的注意事项

我们对训练数据进行均值和方差的处理,得到mean_train以及std_train,但是在对测试数据进行归一化的时候,是不能直接用测试数据的均值和方差来进行归一化的,应该使用训练数据的均值和方差对测试数据进行均值方差归一化

为什么要这样做呢,我们训练这个模型是为了在真实的环境中去使用的,测试数据是模拟真实的环境,但是真实环境很有可能是没法得到所有的测试数据的均值和方差的,是很难得到这种统计数据的,另外,对数据的归一化也是算法的一部分,我们针对后面来的数据,应该也对其进行这样的处理

那么我们就必须要保存训练数据集得到的均值和方差

整体流程

实际操作(以鸢尾花为例)

x前十行的内容(并未进行归一化处理)

scikit-learn中的standardscaler

想调用,只需要

  from sklearn.preprocessing import StandardScaler

创建一个实例

  standardScaler = StandardScaler()

进行fit操作,其包含了很多的信息

  standardScaler.fit(X_train)

数组的均值(对应的四个特征的均值)

对于mean_的_,对于是由用户传进去的变量计算得到的,用户可以随时在外围进行查询的,在后面要有_才行

方差

  standardScaler.std_

这个我的版本已经弃用了,使用的话会报错

标准差

  standardScaler.scale_

现在可以正式使用transform进行数据归一化处理

注意:这样处理以后,X_train实际上没有进行变化

使用

  X_train = standardScaler.transform(X_train)

就可以使X_train保存下归一化以后的矩阵了

在对训练矩阵进行归一化

  X_test_standard = standardScaler.transform(X_test)

使用knn算法进行预测分析准确率

值得注意的是,当我们用归一化以后的训练集来训练机器算法之后,我们在预测的时候,测试数据集必须同样进行归一化,不然的话准确率会相当的低

在pc中手动写出可以实现的归一化

  import numpy as np

  class StandardScaler:

      def __init__(self):
self.mean_ = None
self.scale_ = None; def fit(self, X):
assert X.ndim == 2, "The dimension of X must be 2" self.mean_ = np.array([np.mean(X[:, i]) for i in range(X.shape[1])])
self.scale_ = np.array([np.std(X[:, i]) for i in range(X.shape[1])]) return self def tranform(self, X):
assert X.ndim == 2, "The dimension of X must be 2"
assert self.mean_ is not None and self.scale_ is not None, \
"must fit before transform!"
assert X.shape[1] == len(self.mean_), \
"the feature number of X must be equal to mean_ and std_" resX = np.empty(shape=X.shape, dtype=float)
for col in range(X.shape[1]):
resX[:, col] = (X[:, col] - self.mean_[col]) / self.scale_[col] return resX

【笔记】scikit-learn中的Scaler(归一化)的更多相关文章

  1. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  2. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  3. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  4. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  5. 从头开始学JavaScript 笔记(一)——基础中的基础

    原文:从头开始学JavaScript 笔记(一)--基础中的基础 概要:javascript的组成. 各个组成部分的作用 . 一.javascript的组成   javascript   ECMASc ...

  6. 第十八节,TensorFlow中使用批量归一化(BN)

    在深度学习章节里,已经介绍了批量归一化的概念,详情请点击这里:第九节,改善深层神经网络:超参数调试.正则化以优化(下) 神经网络在进行训练时,主要是用来学习数据的分布规律,如果数据的训练部分和测试部分 ...

  7. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  8. 并发编程学习笔记(4)----jdk5中提供的原子类及Lock使用及原理

    (1)jdk中原子类的使用: jdk5中提供了很多原子类,它会使变量的操作变成原子性的. 原子性:原子性指的是一个操作是不可中断的,即使是在多个线程一起操作的情况下,一个操作一旦开始,就不会被其他线程 ...

  9. [学习笔记] 在Eclipse中导入项目

    参考前文:[学习笔记] 在Eclips 中导出项目 选择已经导出的文件: 导入之后,项目结构如下: 至此,完成.

随机推荐

  1. linux学习之路第七天(压缩和解压类指令详解)

    压缩和解压类 1.gzip/gunzip 指令 gzip 指令用于压缩文件, gunzip用于解压的 基本语法 gzip 文件 (功能描述:压缩文件,指令将文件压缩成*.gz文件) gunzip 文件 ...

  2. Oracle-索引分裂研究

    目录 索引分裂介绍 分类 索引分裂实验 基础环境准备 基础信息统计--之前 数据插入 基础信息统计--之后 Trace 数据统计 数据分析 索引PRI_ID之dba_extents视图 索引PRI_I ...

  3. ES6新增语法(四)——面向对象

    ES6中json的2个变化 简写:名字和值相同时,json可以可以简写 let a=12,b=5; let json = { a, b } console.log(json) // { a:12 , ...

  4. 汉诺塔Python

    刚开始看python实现汉诺塔,自己想了很久才想明白,在这里记录一下,希望以后忘记能够立马记起. n=1时,可以直接a->c n=2时,可以借助b然后将a->c n=3时,可以将最上面的那 ...

  5. Spark—RDD编程常用转换算子代码实例

    Spark-RDD编程常用转换算子代码实例 Spark rdd 常用 Transformation 实例: 1.def map[U: ClassTag](f: T => U): RDD[U]  ...

  6. Scala学习——简介

    一.Scala简介 Scala 是 Scalable Language 的简写,是一门多范式的编程语言,设计初衷是实现可伸缩的语言并集成面向对象编程和函数式编程的各种特性. 二.Scala 环境搭建 ...

  7. springboot-1-入门

    springboot-1-入门 1.springboot简介,背景 简化Spring应用开发的一个框架: 整个Spring技术栈的一个大整合: J2EE开发的一站式解决方案: 2.极简hellowor ...

  8. PAT甲级:1089 Insert or Merge (25分)

    PAT甲级:1089 Insert or Merge (25分) 题干 According to Wikipedia: Insertion sort iterates, consuming one i ...

  9. ThinkPHP3.2.3使用PHPExcel类操作excel导入读取excel

    方法一: 1. 下载PHPExcel并保存在如下位置: 2. 在控制器中引用 vendor("PHPExcel.PHPExcel"); $objReader = \PHPExcel ...

  10. Linux中tomcat随服务器自启动的设置方法

    1. cd到rc.local文件所在目录,一般在 /etc/rc.d/目录. 2. 将rc.local下载到本地windows系统中. 3. 编辑rc.local,将要启动的tomcat  /bin/ ...