洛谷题面传送门

一道挺有意思的题,想到了某一步就很简单,想不到就很毒瘤(

首先看到这样的设问我们显然可以想到背包,具体来说题目等价于对于每个满足 \(i\in[l,r]\) 的 \(a_i\) 赋上一个权值 \(v_i\in\{-1,0,1\}\),满足 \(\sum\limits_{i=l}^rv_ia_i=0\),这是显然可以 \(01\) 背包求解的,时间复杂度 \(qnv\),一脸过不去的亚子,可以使用 bitset 优化到 \(\dfrac{qnv}{\omega}\),但没啥卵用,还是过不去。

这时候我们就要发现一个非常强的性质了。首先比较显然的一点是这个交集为空用处不大,只要不是两个集合重合就行,因为如果交集非空那把交集的部分从两个集合中扣掉和依然是相同的。注意到对于一段区间而言,我们只用判断是否存在两个集合和相同,而对于这个区间的所有子集,它们总共可能贡献出 \(2^{r-l+1}\) 个子集,而和最大只有 \((r-l+1)·v\),因此如果区间长度 \(len\) 满足 \(len·v<2^{len}\),即 \(len\ge 14\),那根据抽屉原理就必然存在两个集合和相同,答案也就是 Yuno 了。

有了这个性质之后事情就变得容易许多。由于 \(len\ge 14\)​ 的情况已经给判掉了,我们只用判断 \(len\le 13\)​ 的情况即可,这个就按照上面的套路 bitset 优化背包即可,甚至实测折半搜 \(q·3^7\) 都可以通过。还有一个小问题是怎样处理修改操作,我们开一棵 BIT 维护每个元素被执行了多少次 \(a_i\leftarrow a_i^3\) 这样的操作,假设这个值为 \(c\),那么显然执行完 \(c\) 次操作后会有 \(a_i=a_i^{3^c}\),一个很直观的想法是扩展欧拉定理降幂,不过由于此题权值很小,可以考虑倍增。具体来说设 \(cub_{i,j}=i^{3^{2^j}}\)​,那么显然有 \(i^{3^{2^j}}=(i^{3^{2^{j-1}}})^{3^{2^{j-1}}}\),倍增一下即可。

时间复杂度 \(n\log n+\dfrac{13qv}{\omega}\)

const int MAXN=1e5;
const int MAXV=1000;
const int DLT=14002;
const int LOG_N=17;
int n,qu,p,cub[MAXV+5][LOG_N+2],t[MAXN+5],a[MAXN+5];
void add(int x,int v){for(int i=x;i<=n;i+=(i&(-i))) t[i]+=v;}
void add_range(int l,int r,int v){add(l,v);add(r+1,-v);}
int query(int x){int ret=0;for(int i=x;i;i&=(i-1)) ret+=t[i];return ret;}
int ask(int x){
int cnt=query(x),cur=a[x];
for(int i=LOG_N;~i;i--) if(cnt>>i&1) cur=cub[cur][i];
return cur;
}
bitset<DLT*2+5> bs;
int main(){
scanf("%d%d%d",&n,&qu,&p);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=0;i<p;i++) cub[i][0]=i*i*i%p;
for(int i=1;i<=LOG_N;i++) for(int j=0;j<p;j++)
cub[j][i]=cub[cub[j][i-1]][i-1];
while(qu--){
int opt,l,r;scanf("%d%d%d",&opt,&l,&r);
if(opt==1){
if(r-l+1>14) puts("Yuno");
else{
bs.reset();
for(int i=l;i<=r;i++){
int v=ask(i)+1;
bs=bs|(bs<<v)|(bs>>v);
bs.set(DLT+v);bs.set(DLT-v);
} printf("%s\n",(bs.test(DLT)?"Yuno":"Yuki"));
}
} else add_range(l,r,1);
}
return 0;
}

洛谷 P5527 - [Ynoi2012] NOIP2016 人生巅峰(抽屉原理+bitset 优化背包)的更多相关文章

  1. 洛谷 P6775 - [NOI2020] 制作菜品(找性质+bitset 优化 dp)

    题面传送门 好久没写过题解了,感觉几天没写手都生疏了 首先这种题目直接做肯定是有些困难的,不过注意到题目中有个奇奇怪怪的条件叫 \(m\ge n-2\),我们不妨从此入手解决这道题. 我们先来探究 \ ...

  2. 【洛谷3648/BZOJ3675】[APIO2014]序列分割(斜率优化DP)

    题目: 洛谷3648 注:这道题洛谷3648有SPJ,要求输出方案.BZOJ3675数据组数较多但不要求输出方案. 分析: 这可能是我第三次重学斜率优化了--好菜啊 这道题首先一看就是个DP.稍微推一 ...

  3. 洛谷P4135 Ynoi2016 掉进兔子洞 (带权bitset?/bitset优化莫队 模板) 题解

    题面. 看到这道题,我第一反应就是莫队. 我甚至也猜出了把所有询问的三个区间压到一起处理然后分别计算对应询问答案. 但是,这么复杂的贡献用什么东西存?难道要开一个数组 query_appear_tim ...

  4. bzoj#4722-由乃【倍增,抽屉原理,bitset】

    正题 题目链接:https://darkbzoj.tk/problem/4722 题目大意 给出一个长度为\(n\)的序列值域为\([0,v)\),要求支持操作 询问一个区间能否找到两个没有交的非空下 ...

  5. 【洛谷P2831】[NOIP2016]愤怒的小鸟

    愤怒的小鸟 题目链接 本来是刷状压DP的,然而不会.. 搜索是比较好想的,直接dfs就行了 我们可以知道两只猪确定一条抛物线 依次处理每一只猪,有以下几种方法: 1.先看已经建立的抛物线是否能打到这只 ...

  6. uoj233/BZOJ4654/洛谷P1721 [Noi2016]国王饮水记 【dp + 斜率优化】

    题目链接 uoj233 题解 下面不加证明地给出几个性质: 小于\(h[1]\)的城市一定是没用的 任何城市联通包含\(1\)且只和\(1\)联通一次 联通顺序从小到大最优 单个联通比多个一起联通要优 ...

  7. 洛谷 P1507 NASA的食物计划 【二维费用背包】 || 【DFS】

    题目链接:https://www.luogu.org/problemnew/show/P1507 题目背景 NASA(美国航空航天局)因为航天飞机的隔热瓦等其他安全技术问题一直大伤脑筋,因此在各方压力 ...

  8. 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)

    传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...

  9. 洛谷P4360 [CEOI2004]锯木厂选址(dp 斜率优化)

    题意 题目链接 Sol 枚举第二个球放的位置,用前缀和推一波之后发现可以斜率优化 // luogu-judger-enable-o2 #include<bits/stdc++.h> #de ...

随机推荐

  1. windows环境下基于pycharm安装Redis出现的两个错误解决方案

    说明:下面给出的两个链接是解决安装和使用Redis的时候遇到的两个问题参考的博客网址,本文有解释不清楚的地方可以原博客查看,侵权删! Q1参考链接-https://blog.csdn.net/maqu ...

  2. 5个步骤,教你瞬间明白线程和线程安全.md

    记得刚来杭州面试的时候,有一家公司的技术总监问了我这样一个问题:你来说说有哪些线程安全的类?我心里一想,这我早都背好了,稀里哗啦说了一大堆. 他又接着问:那你再来说说什么是线程安全?--然后我就GG了 ...

  3. 4.19——数组双指针——26. 删除有序数组中的重复项 & 27. 删除有序数组中的重复项II & 80. 删除有序数组中的重复项 II

    第一次做到数组双指针的题目是80: 因为python的List是可以用以下代码来删除元素的: del List[index] 所以当时的我直接用了暴力删除第三个重复元素的做法,大概代码如下: n = ...

  4. 什么是Spring,SpringMVC,SpringBoot,SpringCloud?通俗易懂

    Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架.Spring使你能够编写更干净.更可管理.并且更易于测试的代码. Spring MVC是Spring的一个模块,一个web框 ...

  5. 【数据结构与算法Python版学习笔记】图——最短路径问题、最小生成树

    最短路径问题 概念 可以通过"traceroute"命令来跟踪信息传送的路径: traceroute www.lib.pku.edu.cn 可以将互联网路由器体系表示为一个带权边的 ...

  6. 【二食堂】Alpha - Scrum Meeting 4

    Scrum Meeting 4 例会时间:4.14 12:30 - 12:50 进度情况 组员 昨日进度 今日任务 李健 1. 主页面的搭建工作issue 1. 完成主页搭建**issue2. 与后端 ...

  7. openmp学习心得(二)----常见的运行时库函数

    omp_set_dynamic();如果设置了动态调整,并行区域会根据系统的资源状况,动态分配线程的数量.好像仅仅有0和非0的区别,设置为0不进行动态分配. omp_get_num_threads,o ...

  8. Nginx(二):Nginx的四层(L4)和七层(L7)负载均衡

    OSI七层模型 和 TCP/IP四层模型 四层负载均衡( L4 Load Balancing ) 四层负载均衡,主要通过报文中的目标地址和端口,再加上负载均衡设备设置的服务器选择方式,决定最终选择的内 ...

  9. C#笔记2__Char类、String类、StringBuilder类 / 正则表达式 /

    Char类 String类 字符串的格式化:String类的Format方法 StringBuilder类 以上:百度 or 查手册.....

  10. 使用ssh连接到centos7中docker容器

    任务: 使用ssh连接到centos7中docker容器 实验步骤: 实验环境搭建,详情请看上一篇. 因为docker中容器的ip通常来说是和真机以及centos7的ip不属于一个网段,因此直接访问是 ...