洛谷题面传送门

一道挺有意思的题,想到了某一步就很简单,想不到就很毒瘤(

首先看到这样的设问我们显然可以想到背包,具体来说题目等价于对于每个满足 \(i\in[l,r]\) 的 \(a_i\) 赋上一个权值 \(v_i\in\{-1,0,1\}\),满足 \(\sum\limits_{i=l}^rv_ia_i=0\),这是显然可以 \(01\) 背包求解的,时间复杂度 \(qnv\),一脸过不去的亚子,可以使用 bitset 优化到 \(\dfrac{qnv}{\omega}\),但没啥卵用,还是过不去。

这时候我们就要发现一个非常强的性质了。首先比较显然的一点是这个交集为空用处不大,只要不是两个集合重合就行,因为如果交集非空那把交集的部分从两个集合中扣掉和依然是相同的。注意到对于一段区间而言,我们只用判断是否存在两个集合和相同,而对于这个区间的所有子集,它们总共可能贡献出 \(2^{r-l+1}\) 个子集,而和最大只有 \((r-l+1)·v\),因此如果区间长度 \(len\) 满足 \(len·v<2^{len}\),即 \(len\ge 14\),那根据抽屉原理就必然存在两个集合和相同,答案也就是 Yuno 了。

有了这个性质之后事情就变得容易许多。由于 \(len\ge 14\)​ 的情况已经给判掉了,我们只用判断 \(len\le 13\)​ 的情况即可,这个就按照上面的套路 bitset 优化背包即可,甚至实测折半搜 \(q·3^7\) 都可以通过。还有一个小问题是怎样处理修改操作,我们开一棵 BIT 维护每个元素被执行了多少次 \(a_i\leftarrow a_i^3\) 这样的操作,假设这个值为 \(c\),那么显然执行完 \(c\) 次操作后会有 \(a_i=a_i^{3^c}\),一个很直观的想法是扩展欧拉定理降幂,不过由于此题权值很小,可以考虑倍增。具体来说设 \(cub_{i,j}=i^{3^{2^j}}\)​,那么显然有 \(i^{3^{2^j}}=(i^{3^{2^{j-1}}})^{3^{2^{j-1}}}\),倍增一下即可。

时间复杂度 \(n\log n+\dfrac{13qv}{\omega}\)

const int MAXN=1e5;
const int MAXV=1000;
const int DLT=14002;
const int LOG_N=17;
int n,qu,p,cub[MAXV+5][LOG_N+2],t[MAXN+5],a[MAXN+5];
void add(int x,int v){for(int i=x;i<=n;i+=(i&(-i))) t[i]+=v;}
void add_range(int l,int r,int v){add(l,v);add(r+1,-v);}
int query(int x){int ret=0;for(int i=x;i;i&=(i-1)) ret+=t[i];return ret;}
int ask(int x){
int cnt=query(x),cur=a[x];
for(int i=LOG_N;~i;i--) if(cnt>>i&1) cur=cub[cur][i];
return cur;
}
bitset<DLT*2+5> bs;
int main(){
scanf("%d%d%d",&n,&qu,&p);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=0;i<p;i++) cub[i][0]=i*i*i%p;
for(int i=1;i<=LOG_N;i++) for(int j=0;j<p;j++)
cub[j][i]=cub[cub[j][i-1]][i-1];
while(qu--){
int opt,l,r;scanf("%d%d%d",&opt,&l,&r);
if(opt==1){
if(r-l+1>14) puts("Yuno");
else{
bs.reset();
for(int i=l;i<=r;i++){
int v=ask(i)+1;
bs=bs|(bs<<v)|(bs>>v);
bs.set(DLT+v);bs.set(DLT-v);
} printf("%s\n",(bs.test(DLT)?"Yuno":"Yuki"));
}
} else add_range(l,r,1);
}
return 0;
}

洛谷 P5527 - [Ynoi2012] NOIP2016 人生巅峰(抽屉原理+bitset 优化背包)的更多相关文章

  1. 洛谷 P6775 - [NOI2020] 制作菜品(找性质+bitset 优化 dp)

    题面传送门 好久没写过题解了,感觉几天没写手都生疏了 首先这种题目直接做肯定是有些困难的,不过注意到题目中有个奇奇怪怪的条件叫 \(m\ge n-2\),我们不妨从此入手解决这道题. 我们先来探究 \ ...

  2. 【洛谷3648/BZOJ3675】[APIO2014]序列分割(斜率优化DP)

    题目: 洛谷3648 注:这道题洛谷3648有SPJ,要求输出方案.BZOJ3675数据组数较多但不要求输出方案. 分析: 这可能是我第三次重学斜率优化了--好菜啊 这道题首先一看就是个DP.稍微推一 ...

  3. 洛谷P4135 Ynoi2016 掉进兔子洞 (带权bitset?/bitset优化莫队 模板) 题解

    题面. 看到这道题,我第一反应就是莫队. 我甚至也猜出了把所有询问的三个区间压到一起处理然后分别计算对应询问答案. 但是,这么复杂的贡献用什么东西存?难道要开一个数组 query_appear_tim ...

  4. bzoj#4722-由乃【倍增,抽屉原理,bitset】

    正题 题目链接:https://darkbzoj.tk/problem/4722 题目大意 给出一个长度为\(n\)的序列值域为\([0,v)\),要求支持操作 询问一个区间能否找到两个没有交的非空下 ...

  5. 【洛谷P2831】[NOIP2016]愤怒的小鸟

    愤怒的小鸟 题目链接 本来是刷状压DP的,然而不会.. 搜索是比较好想的,直接dfs就行了 我们可以知道两只猪确定一条抛物线 依次处理每一只猪,有以下几种方法: 1.先看已经建立的抛物线是否能打到这只 ...

  6. uoj233/BZOJ4654/洛谷P1721 [Noi2016]国王饮水记 【dp + 斜率优化】

    题目链接 uoj233 题解 下面不加证明地给出几个性质: 小于\(h[1]\)的城市一定是没用的 任何城市联通包含\(1\)且只和\(1\)联通一次 联通顺序从小到大最优 单个联通比多个一起联通要优 ...

  7. 洛谷 P1507 NASA的食物计划 【二维费用背包】 || 【DFS】

    题目链接:https://www.luogu.org/problemnew/show/P1507 题目背景 NASA(美国航空航天局)因为航天飞机的隔热瓦等其他安全技术问题一直大伤脑筋,因此在各方压力 ...

  8. 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)

    传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...

  9. 洛谷P4360 [CEOI2004]锯木厂选址(dp 斜率优化)

    题意 题目链接 Sol 枚举第二个球放的位置,用前缀和推一波之后发现可以斜率优化 // luogu-judger-enable-o2 #include<bits/stdc++.h> #de ...

随机推荐

  1. Kali Linux修改root密码

    今天在官网下载了一个Kali虚拟机的压缩包, 解压缩后直接在VM中打开,点了好多次打开发现都打不开,查了一下说是没有关闭共享虚拟机,于是操作了一番: 编辑→首选项→共享虚拟机→选择禁用. 操作完之后果 ...

  2. 【Java虚拟机11】线程上下文类加载器

    前言 目前学习到的类加载的知识,都是基于[双亲委托机制]的.那么JDK难道就没有提供一种打破双亲委托机制的类加载机制吗? 答案是否定的. JDK为我们提供了一种打破双亲委托模型的机制:线程上下文类加载 ...

  3. 【UE4】Windows 的几种打包方式

    简述 自动化工具(Unreal Automation Tool,简称 UAT) 自动化工具使用特定的命令 BuildCookRun 封装流程包含 构建(Build):该阶段将为所选择的平台编译可执行文 ...

  4. [对对子队]会议记录5.27(Scrum Meeting12)

    今天已完成的工作 朱俊豪 ​ 工作内容:寻找电池模型和BGM,修改关卡选择场景 ​ 相关issue:优化初步导出版本 ​ 相关签入:perf:地图界面优化 feat:更新系列资源(星星,大电池) 何瑞 ...

  5. zuul过滤器filter 的编写

    通过上一节(zuul的各种配置)的学习,我们学会了zuul路由的各种配置,这一节我们来实现一下zuul的过滤器功能.那么为什么需要用到zuul的过滤器呢?我们知道zuul是我们实现外部系统统一访问的入 ...

  6. stm32串口学习笔记

    stm32作为现在嵌入式物联网单片机行业中经常要用多的技术,相信大家都有所接触,今天这篇就给大家详细的分析下有关于stm32的出口,还不是很清楚的朋友要注意看看了哦,在最后还会为大家分享有些关于stm ...

  7. 《基于SD-SEIR模型的实验室人员不安全行为传播研究》

    My Focus:基于SD-SEIR模型的实验室人员不安全行为的传播; 建模与实验仿真 Title: Study on Porpagation of Unsafe Bhavior of Laborat ...

  8. 洛谷 P4867 Gty的二逼妹子序列

    链接: P4867 题意: 给出长度为 \(n(1\leq n\leq 10^5)\) 的序列 \(s\),保证\(1\leq s_i\leq n\).有 \(m(1\leq m\leq 10^6)\ ...

  9. 一张图彻底搞懂Spring循环依赖

    1 什么是循环依赖? 如下图所示: BeanA类依赖了BeanB类,同时BeanB类又依赖了BeanA类.这种依赖关系形成了一个闭环,我们把这种依赖关系就称之为循环依赖.同理,再如下图的情况: 上图中 ...

  10. Linux上Qt旋转显示

    对于嵌入式设备来说用于显示的LCD总是千奇百怪,比如说明明是一个竖屏,但是客户却要当横屏使用,也就是意味着我们需要将整个屏幕上显示的内容旋转90度或者270度. 这个操作对于Android系统来说相当 ...