Codeforces 997D - Cycles in product(换根 dp)
一种换根 dp 的做法。
首先碰到这类题目,我们很明显不能真的把图 \(G\) 建出来,因此我们需要观察一下图 \(G\) 有哪些性质。很明显我们可以把它看作 \(T_1,T_2\) 上分别有一个标记,每次可以将 \(T_1,T_2\) 上的某个标记沿着某条边移动一步,问 \(k\) 步之后标记刚好回到原位的方案数是多少。
显然两棵树是独立的,因此可以分开来考虑,我们记 \(dp1_{i,j}\) 表示 \(T_1\) 中从 \(i\) 开始走 \(j\) 步又回到 \(i\) 的方案数,\(dp2_{i,j}\) 也同理,那么显然有 \(ans=\sum\limits_{x\in T_1}\sum\limits_{y\in T_2}\sum\limits_{i=0}^kdp1_{x,i}dp2_{y,k-i}\dbinom{k}{i}\),把组合数裂开可以得到 \(ans=k!\sum\limits_{i=0}^k\sum\limits_{x\in T_1}\dfrac{dp_{x,i}}{i!}\sum\limits_{y\in T_2}\dfrac{dp_{y,k-i}}{(k-i)!}\),两部分分别求个和然后 \(\mathcal O(k)\) 合并即可。
因此接下来我们的任务就是求出 \(dp1_{i,j}\) 和 \(dp2_{i,j}\),两部分是等价的,因此考虑怎样求 \(dp1_{i,j}\),在下文中为了方便起见,我们用 \(dp_{i,j}\) 代替 \(dp1_{i,j}\),我们不妨以 \(1\) 为根做一遍 DFS,设 \(f_{x,j}\) 表示从 \(x\) 开始,只经过 \(x\) 子树内,\(j\) 步后回到 \(i\) 的方案数,那么我们显然可以枚举 \(i\) 第一步到达的点是什么,经过多少步之后第一次回到 \(x\),那么有 \(f_{x,j}=\sum\limits_{y\in\text{son}(x)}\sum\limits_{t=2k,t\le j,k\in\mathbb{Z}^+}f_{y,t-2}f_{x,j-t}\),这个显然可以一遍 DFS 带走,我们再设 \(out_{x,j}\) 表示从 \(fa_x\) 开始,不经过 \(x\) 子树内的点,\(j\) 步回到 \(x\) 的方案数,那么我们还是可以枚举第一步到达的点 \(y\) 以及第一次回到 \(fa_x\) 的时间 \(t\),那么这种情况对 \(out_{x,j}\) 的贡献就是 \(v_t\times out_{x,t}\),其中如果 \(y\) 是 \(fa_x\) 的父亲,那么 \(v_t=out_{fa_x,t}\),否则 \(v_t=f_{y,t}\),这个暴力搞是 \(\mathcal O(deg_i^2)\) 的,碰到菊花图就凉凉了,考虑优化,注意到这东西可以写成 \(\sum\limits_{t}S_t\times out_{x,t}\) 的形式,因此我们可以先提前一遍预处理求出所有子树的 \(f_{y,t}\) 之和,扫到一个子树时就把该子树内的贡献撤销掉,回溯时再加上,这样复杂度就 ok 了。最后 \(dp_{x,j}\) 的转移方程就比较容易了,还是枚举第一步到达的点 \(y\) 和第一次回到 \(x\) 的时间 \(t\),那么如果 \(y\) 是 \(x\) 的父亲贡献就是 \(out_{x,t-2}dp_{x,j-t}\),否则是 \(f_{y,t-2}dp_{x,j-t}\)。
时间复杂度 \(\mathcal O(nk^2)\)。
可以写个类封装一下,避免写过多一模一样的代码。
const int MAXN=4000;
const int MAXK=75;
const int MOD=998244353;
int k,fac[MAXK+5],ifac[MAXK+5];
void init_fac(int n){
for(int i=(fac[0]=ifac[0]=ifac[1]=1)+1;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
}
struct tree_solver{
int n,hd[MAXN+5],to[MAXN*2+5],nxt[MAXN*2+5],ec=0,sum[MAXK+5];
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
void read(){for(int i=1,u,v;i<n;i++) scanf("%d%d",&u,&v),adde(u,v),adde(v,u);}
int f[MAXN+5][MAXK+5],dp[MAXN+5][MAXK+5],out[MAXN+5][MAXK+5],dep[MAXN+5];
void dfs0(int x,int fa){
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==fa) continue;
dep[y]=dep[x]+1;dfs0(y,x);
}
}
void dfs1(int x,int fa,int t){
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==fa) continue;dfs1(y,x,t);
for(int i=0;i<t;i+=2) f[x][t]=(f[x][t]+1ll*f[x][i]*f[y][t-i-2])%MOD;
}
}
void dfs2(int x,int fa,int t){
vector<int> s(t+1);
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];
if(y==fa) for(int i=0;i<t;i+=2) s[i]=(s[i]+out[x][t-i-2])%MOD;
else for(int i=0;i<t;i+=2) s[i]=(s[i]+f[y][t-i-2])%MOD;
}
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==fa) continue;
for(int i=0;i<t;i+=2) s[i]=(s[i]-f[y][t-i-2]+MOD)%MOD;
for(int i=0;i<t;i+=2) out[y][t]=(out[y][t]+1ll*s[i]*out[y][i])%MOD;
for(int i=0;i<t;i+=2) s[i]=(s[i]+f[y][t-i-2])%MOD;
dfs2(y,x,t);
}
}
void solve(){
dfs0(1,0);
for(int i=1;i<=n;i++) dp[i][0]=f[i][0]=out[i][0]=1;
for(int i=2;i<=k;i+=2){
dfs1(1,0,i);dfs2(1,0,i);
// for(int j=1;j<=n;j++) printf("%d %d %d %d\n",j,i,f[j][i],out[j][i]);
}
for(int i=2;i<=k;i+=2) for(int x=1;x<=n;x++){
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];
if(dep[y]>dep[x]){
for(int j=0;j<i;j+=2) dp[x][i]=(dp[x][i]+1ll*dp[x][i-j-2]*f[y][j])%MOD;
} else {
for(int j=0;j<i;j+=2) dp[x][i]=(dp[x][i]+1ll*dp[x][i-j-2]*out[x][j])%MOD;
}
} //printf("%d %d %d\n",x,i,dp[x][i]);
}
for(int i=0;i<=k;i+=2) for(int x=1;x<=n;x++)
sum[i]=(sum[i]+1ll*ifac[i]*dp[x][i])%MOD;
// for(int i=0;i<=k;i+=2) printf("%d\n",sum[i]);
}
} t1,t2;
int main(){
scanf("%d%d%d",&t1.n,&t2.n,&k);if(k&1) return puts("0"),0;
t1.read();t2.read();init_fac(k);t1.solve();t2.solve();
int ans=0;for(int i=0;i<=k;i+=2) ans=(ans+1ll*t1.sum[i]*t2.sum[k-i])%MOD;
printf("%d\n",1ll*ans*fac[k]%MOD);
return 0;
}
Codeforces 997D - Cycles in product(换根 dp)的更多相关文章
- Codeforces 891D - Sloth(换根 dp)
Codeforces 题面传送门 & 洛谷题面传送门 换根 dp 好题. 为啥没人做/yiw 首先 \(n\) 为奇数时答案显然为 \(0\),证明显然.接下来我们着重探讨 \(n\) 是偶数 ...
- [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]
题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...
- 2018.10.15 NOIP训练 水流成河(换根dp)
传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...
- 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...
- 小奇的仓库:换根dp
一道很好的换根dp题.考场上现场yy十分愉快 给定树,求每个点的到其它所有点的距离异或上m之后的值,n=100000,m<=16 只能线性复杂度求解,m又小得奇怪.或者带一个log像kx一样打一 ...
- 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
题意 题目链接:https://www.luogu.org/problem/P4827 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...
- Acesrc and Travel(2019年杭电多校第八场06+HDU6662+换根dp)
题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得\(a_i,b_i\)(到达这个点时两个人都会获得)的权值,已经经过的点无法再次 ...
- bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp
题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...
- codeforces1156D 0-1-Tree 换根dp
题目传送门 题意: 给定一棵n个点的边权为0或1的树,一条合法的路径(x,y)(x≠y)满足,从x走到y,一旦经过边权为1的边,就不能再经过边权为0的边,求有多少边满足条件? 思路: 首先,这道题也可 ...
随机推荐
- PHP伪协议与文件包含漏洞1
PHP文件包含漏洞花样繁多,需配合代码审计. 看能否使用这类漏洞时,主要看: (1)代码中是否有include(),且参数可控: 如: (2)php.ini设置:确保 allow_url_fopen= ...
- Stream中的Pipeline理解
使用Stream已经快3年了,但是从未真正深入研究过Stream的底层实现. 今天开始把最近学到的Stream原理记录一下. 本篇文章简单描述一下自己对pipeline的理解. 基于下面一段代码: p ...
- cassandra表中主键的类型
cassandra表中主键的类型及区分? 一.类型及区分 二.参考文章 一.类型及区分 Cassandra的4种Key Primary Key 主键 Composite Key,Compound Ke ...
- [对对子队]会议记录5.18(Scrum Meeting5)
今天已完成的工作 何瑞 工作内容:搭建第8关 相关issue:搭建关卡7.8.9 相关签入:feat:初步搭建了Lv8 吴昭邦 工作内容:搭建第8关 相关issue:搭建关卡7.8 ...
- Canal Server发送binlog消息到Kafka消息队列中
Canal Server发送binlog消息到Kafka消息队列中 一.背景 二.需要修改的地方 1.canal.properties 配置文件修改 1.修改canal.serverMode的值 2. ...
- Prometheus重新标记
Prometheus重新标记 一.背景 二.简化的指标抓取的生命周期 1.配置参数详解 1.`action:`存在的值 1.替换标签值 2.删除指标 3.创建或删除标签 2.删除标签注意事项 3.几个 ...
- 嵌入式单片机之stm32串口你懂了多少!!
stm32作为现在嵌入式物联网单片机行业中经常要用多的技术,相信大家都有所接触,今天这篇就给大家详细的分析下有关于stm32的出口,还不是很清楚的朋友要注意看看了哦,在最后还会为大家分享有些关于stm ...
- stm32电机控制之控制两路直流电机
小车使用的电机是12v供电的直流电机,带编码器反馈,这样就可以采用闭环速度控制,这里电机使用PWM驱动,速度控制框图如下: 由以上框图可知,STM32通过定时器模块输出PWM波来控制两个直流电机的转动 ...
- 算法:杨辉三角(Pascal's Triangle)
一.杨辉三角介绍 杨辉三角形,又称帕斯卡三角形.贾宪三角形.海亚姆三角形.巴斯卡三角形,是二项式系数的一种写法,形似三角形,在中国首现于南宋杨辉的<详解九章算法>得名,书中杨辉说明是引自贾 ...
- 2021CCPC河南省省赛
大一萌新,第一次打比赛,虽然是线下赛,但送气球的环节还是很赞的! 这里主要是补一下自己的弱项和考试时没有做出来的题目. 1002(链接之后再放,官方还没公开题目...) 先说一下第二题,这个题一看就是 ...