\(\mathcal{Description}\)

  给定排列 \(\{p_n\}\),可以在其上进行若干次操作,每次选取 \([l,r]\),把其中所有元素变为原区间最小值,求能够得到的所有不同序列数量。答案对 \((10^9+7)\) 取模。

  \(n\le5\times10^3\)。

\(\mathcal{Solution}\)

  一类题型一起写啦,再给出一道类似的题:

  给定字符串 \(s\),\(s_i\in\{\text{'R'},\text{'G'},\text{'Y'}\}\),每次允许交换相邻两个元素。求最少交换次数,使得 \(s\) 中不存在两个相邻元素相等,或声明无解。

  \(n\le400\)。

  不难看出它们都是 DP 题,但是若以从左到右的视角考虑问题,给定的操作具有强后效性,很难设计出一种靠谱的状态。

  这个时候可以奉行“拿来主义”(?),直接构造结果序列,将问题转化为把原序列上某值拿到结果序列的某位置的最小操作次数 / 方案数,再根据实际情况设计算法就很方便了。

  例如,对于求方案数的这题,令 \(f(i,j)\) 表示构造了结果序列的前 \(i\) 位,第 \(i\) 位用的是原序列的 \(p_j\) 的方案数。根据较大值不能覆盖较小值设计转移即可;对于最小化操作次数这题,令 \(f(i,r,g,k\in\{0,1,2\})\) 表示构造了结果序列前 \(i\) 位,用了 \(r\) 个 R,\(g\) 个 G,(\((i-r-g)\) 个 Y,)最后一个位置颜色为 \(k\) 的最小代价。转移利用类似冒泡排序的性质,在原序列里拿一个最近的颜色到当前位置即可。

\(\mathcal{Code}\)

  只给那道计数题的代码叭。

/*-Rainybunny-*/

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) const int MAXN = 5e3, MOD = 1e9 + 7;
int n, a[MAXN + 5], lef[MAXN + 5], rig[MAXN + 5], f[2][MAXN + 5]; inline void addeq( int& u, const int v ) { ( u += v ) >= MOD && ( u -= MOD ); } inline void init() {
static int stk[MAXN + 5]; int top = 0;
rep ( i, 1, n ) {
while ( top && a[stk[top]] >= a[i] ) --top;
lef[i] = stk[top] + 1, stk[++top] = i;
}
stk[top = 0] = n + 1;
per ( i, n, 1 ) {
while ( top && a[stk[top]] >= a[i] ) --top;
rig[i] = stk[top] - 1, stk[++top] = i;
}
} int main() {
freopen( "C.in", "r", stdin );
freopen( "C.out", "w", stdout ); scanf( "%d", &n );
rep ( i, 1, n ) scanf( "%d", &a[i] ); init();
rep ( i, 1, n ) if ( lef[i] == 1 ) f[1][i] = 1;
for ( int sta = 1, i = 2; i <= n; sta ^= 1, ++i ) {
rep ( j, 1, n ) f[!sta][j] = rig[j] >= i ? f[sta][j] : 0;
int s = 0;
rep ( j, 1, n ) {
if ( lef[j] <= i && i <= rig[j] ) addeq( f[!sta][j], s );
addeq( s, f[sta][j] );
}
} int ans = 0;
rep ( i, 1, n ) addeq( ans, f[n & 1][i] );
printf( "%d\n", ans );
return 0;
}

Solution -「多校联训」I Love Random的更多相关文章

  1. Solution -「多校联训」排水系统

    \(\mathcal{Description}\)   Link.   在 NOIP 2020 A 的基础上,每条边赋权值 \(a_i\),随机恰好一条边断掉,第 \(i\) 条段的概率正比于 \(a ...

  2. Solution -「多校联训」签到题

    \(\mathcal{Description}\)   Link.   给定二分图 \(G=(X\cup Y,E)\),求对于边的一个染色 \(f:E\rightarrow\{1,2,\dots,c\ ...

  3. Solution -「多校联训」朝鲜时蔬

    \(\mathcal{Description}\)   Link.   破案了,朝鲜时蔬 = 超现实树!(指写得像那什么一样的题面.   对于整数集 \(X\),定义其 好子集 为满足 \(Y\sub ...

  4. Solution -「多校联训」消失的运算符

    \(\mathcal{Description}\)   Link.   给定长度为 \(n\) 的合法表达式序列 \(s\),其中数字仅有一位正数,运算符仅有 - 作为占位.求将其中恰好 \(k\) ...

  5. Solution -「多校联训」假人

    \(\mathcal{Description}\)   Link.   一种物品有 长度 和 权值 两种属性,现给定 \(n\) 组物品,第 \(i\) 组有 \(k_i\) 个,分别为 \((1,a ...

  6. Solution -「多校联训」古老的序列问题

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),和 \(q\) 次形如 \([L,R]\) 的询问,每次回答 \[\sum_{[l,r]\su ...

  7. Solution -「多校联训」Sample

    \(\mathcal{Description}\)   Link   (稍作简化:)对于变量 \(p_{1..n}\),满足 \(p_i\in[0,1],~\sum p_i=1\) 时,求 \(\ma ...

  8. Solution -「多校联训」光影交错

    \(\mathcal{Description}\)   Link.   一个游戏包含若干次卡牌抽取,每次以 \(p_l\) 的概率得到 \(+1\),\(p_d\) 的概率得到 \(-1\),否则得到 ...

  9. Solution -「多校联训」数学考试

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个函数,第 \(i\) 个有 \(f_i(x)=a_ix^3+b_ix^2+cx_i+d~(x\in[l_i, ...

随机推荐

  1. 第10组 Alpha冲刺 (6/6)

    1.1基本情况 ·队名:今晚不睡觉 ·组长博客:https://www.cnblogs.com/cpandbb/p/14008187.html ·作业博客:https://edu.cnblogs.co ...

  2. 在变压器厂中使用 ISA-95 应用程序进行调度集成

    介绍 在工业批量和连续生产/运营环境中,调度涉及将诸如罐.反应器和其他加工设备之类的资源分配给生产/运营任务.第 4 层生产/运营计划确定要制造什么产品.要制造多少产品以及何时制造.根据设备.物料.人 ...

  3. 在 python 项目中如何记录日志

    一. 概述 写本文的目的是我在写 python 项目的时候需要记录日志,我忘记怎么处理了,每次都需要去网上查一遍,好记性不如烂笔头, 这里把查阅的内容记录下来,方便以后查找. python 项目中记录 ...

  4. How To Remove Systemd Service

    Method systemctl stop [servicename] systemctl disable [servicename] rm /your/service/locations/[serv ...

  5. 前端基础之SCC

    目录 一:SCC 1.什么数SCC? 2.CSS3语法 3.语法结构 4.注释语法 5.css代码书写位置(引入方式) 二:scc代码书写位置(引入方式实战) 1.style内部直接编写css代码 2 ...

  6. linux设置定时任务(全面解析教程)

    目录 一:系统定时任务 二:系统定时任务配置文件(crontab) 三:增加定时任务 1.crontab -e 2.1.sh 3.2.txt 四:查看crontab定时任务 五:定时任务配置文件(ro ...

  7. MongoDB常用运维命令

    # 查看Mongodb版本信息 mongos> db.version() # 关闭mongodb服务 mongos> use admin mongos> shutdownServer ...

  8. django学习总结1

    ## 内容回顾 #### 1.所有的命令 ##### 下载安装 ​ pip install django==1.11.20 - i 源 ##### 创建项目 ​ django-admin startp ...

  9. hive DML 操作

    数据导入 向表中装载数据(Load) 1.语法 load data [local] inpath '数据的 path' [overwrite] into table student [partitio ...

  10. Gulp自动化任务及nvm、npm常用命令

    项目环境配置 nvm:   node版本管理工具,安装和环境变量         cmd常用命令: · nvm use [version]: 切换至指定版本的node · nvm install no ...