正题

题目链接:https://www.luogu.com.cn/problem/AT4119


题目大意

一个集合\(S=\{k\in[1,n]\cup N\}\),它的所有子集作为元素组成的集合中要求满足每一个数字的出现之和不小于\(2\),求方案数对\(P\)取模。

\(1\leq n\leq 3000,P\in[10^8,10^{9}+9]\cup Pri\)


解题思路

考虑至少\(i\)个数选择次数不超过\(1\),那么这个方案的容斥系数就是\((-1)^i\)。

考虑怎么求这个方案,我们可以先不要被限制了的数,然后再将这些被限制了的数丢进被选出了的集合中。设有\(j\)个集合包含被限制了的数,那么丢进这些集合的方案就是\(\begin{Bmatrix} i+1\\j+1 \end{Bmatrix}\)(一个数字可以选择不丢所以开一个新的集合表示这个集合内的数不使用),然后剩下的数随意的选入这些集合中就是\((2^{n-i})^j\)。

那么答案出来了

\[\sum_{i=0}^n(-1)^i2^{2^{n-i}}\binom{n}{i}\sum_{j=0}^i\begin{Bmatrix}i+1\\ j+1\end{Bmatrix}(2^{n-i})^j
\]

直接预处理斯特林数计算就好了,时间复杂度\(O(n^2)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=3100;
ll n,P,s[N][N],fac[N],ans;
ll power(ll x,ll b,ll p=P){
ll ans=1;
while(b){
if(b&1)ans=ans*x%p;
x=x*x%p;b>>=1;
}
return ans;
}
ll C(ll n,ll m)
{return fac[n]*power(fac[m],P-2)%P*power(fac[n-m],P-2)%P;}
signed main()
{
scanf("%lld%lld",&n,&P);s[0][0]=fac[0]=1;
for(ll i=1;i<=n;i++)fac[i]=fac[i-1]*i%P;
for(ll i=1;i<=n+1;i++)
for(ll j=1;j<=i;j++)
s[i][j]=(s[i-1][j-1]+j*s[i-1][j]%P)%P;
for(ll i=0;i<=n;i++){
ll sum=0,tmp=power(2,power(2,n-i,P-1));
if(i&1)tmp=P-tmp;tmp=tmp*C(n,i)%P;
for(ll j=0,z=1,p=power(2,n-i);j<=i;j++,z=z*p%P)
(sum+=s[i+1][j+1]*z%P)%=P;
(ans+=sum*tmp)%=P;
}
printf("%lld\n",ans);
return 0;
}

AT4119-[ARC096C]Everything on It【斯特林数,容斥】的更多相关文章

  1. [FJOI2017]矩阵填数——容斥

    参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...

  2. (noip模拟十七)【BZOJ3930】[CQOI2015]选数-容斥水法

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  3. BZOJ 2287 DP+容斥

    思路: 先处理出来f[j]表示这i个物品都可用 填满容量j的方案数 容斥一发 处理出来g[j]=g[j-w[i]] 表示i不能用的时候 填满容量j的方案数 //By SiriusRen #includ ...

  4. 【CF715E】Complete the Permutations(容斥,第一类斯特林数)

    [CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...

  5. ARC096 E Everything on It [容斥,斯特林数]

    Atcoder 一个900分的题耗了我这么久--而且官方题解还那么短--必须纪念一下-- 思路 发现每种元素必须出现两次以上的限制极为恶心,所以容斥,枚举出现0/1次的元素个数分别有几个.设出现1次的 ...

  6. BZOJ.5093.[Lydsy1711月赛]图的价值(NTT 斯特林数)

    题目链接 对于单独一个点,我们枚举它的度数(有多少条边)来计算它的贡献:\[\sum_{i=0}^{n-1}i^kC_{n-1}^i2^{\frac{(n-2)(n-1)}{2}}\] 每个点是一样的 ...

  7. BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)

    题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j ...

  8. 【CF961G】Partitions(第二类斯特林数)

    [CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...

  9. BZOJ.4555.[HEOI2016&TJOI2016]求和(NTT 斯特林数)

    题目链接 \(Description\) 求\[\sum_{i=0}^n\sum_{j=0}^iS(i,j)\times 2^j\times j!\mod 998244353\] 其中\(S(i,j) ...

随机推荐

  1. COM笔记-类厂

    CoCreateInstance实际上并没有直接创建COM组件 ,而是创建了一个被称作是类厂的组件.而所需的组件正是由些类厂创建的.类厂组件的唯一功能就创建其他的组件.创建组件的标准接口是IClass ...

  2. Java 数组结构

    数组是最常见的一种数据结构,是相同类型的.用一个标识符封装到一起的基本类型数据序列或对象序列.可以用一个统一的数组名和下标来唯一确定数组中的元素.实质上数组是一个简单的线性序列,因此数组访问起来很快. ...

  3. bootStrap模态框与select2合用时input不能获取焦点、模态框内部滑动,select选中跳转

    bootStrap模态框与select2合用时input不能获取焦点 在bootstrap的模态框里使用select2插件,会导致select2里的input输入框没有办法获得焦点,没有办法输入. 把 ...

  4. redis未授权getshell的4种方式

    前言 redis未授权漏洞或弱口令一直是很有用的渗透突破口,最近正好闲的无事就拿redis来测试一些,做一个简单的收集,方便自己日后的回顾. 漏洞描述 Redis 默认情况下,会绑定在 0.0.0.0 ...

  5. 一、Rabbitmq的简单介绍

    以下只是本人从零学习过程的整理 部分内容参考地址:https://www.cnblogs.com/ysocean/p/9240877.html 1.RabbitMQ的概念 RabbitMQ是实现了高级 ...

  6. Java并发之锁升级:无锁->偏向锁->轻量级锁->重量级锁

    Java并发之锁升级:无锁->偏向锁->轻量级锁->重量级锁 对象头markword 在lock_bits为01的大前提下,只有当是否偏向锁位值为1的时候,才表明当前对象处于偏向锁定 ...

  7. Nginx版本平滑升级方案

    背景:由于负载均衡测试服务器中nginx版本过低,存在安全漏洞,查询相关修复漏洞资料,需要采取nginx版本升级形式对漏洞进行修复. Nginx平滑升级方案 1.案例采用版本介绍 旧版本 nginx- ...

  8. 微信支付 V3 开发教程(一):初识 Senparc.Weixin.TenPayV3

    前言 我在 9 年前发布了 Senparc.Weixin SDK 第一个开源版本,一直维护至今,如今 Stras 已经破 7K,这一路上得到了 .NET 社区的积极响应和支持,也受到了非常多的宝贵建议 ...

  9. java 集合特性面试必备

    collection 集合体系 数据结构栈和队列栈结构 :先进后出队列结构 :先进先出 数据结构之数组和链表数组结构:查询快.增删慢队列结构 :查询慢.增删快 List集合概述有序集合(也称为序列), ...

  10. weblogic漏洞分析之CVE-2017-3248 & CVE-2018-2628

    CVE-2017-3248 & CVE-2018-2628 后面的漏洞就是2017-3248的绕过而已,所以poc都一样,只是使用的payload不同 本机开启JRMP服务端 ->利用T ...