Jzzhu has invented a kind of sequences, they meet the following property:

You are given x and y, please calculate fn modulo 1000000007 (109 + 7).

Input

The first line contains two integers x and y (|x|, |y| ≤ 109). The second line contains a single integer n (1 ≤ n ≤ 2·109).

Output

Output a single integer representing fn modulo 1000000007 (109 + 7).

Examples
input
2 3
3
output
1
input
0 -1
2
output
1000000006
Note

In the first sample, f2 = f1 + f3, 3 = 2 + f3, f3 = 1.

In the second sample, f2 =  - 1;  - 1 modulo (109 + 7) equals (109 + 6).

题意:给出一个递推式和前两项,求第n项模1e9+7后的值。

题解:这题其实本来是很水的..只是最近都在尝试写一些矩阵快速幂的题目,最难的在于化递推式并构造矩阵上,而这道题直接给出了递推式,心痒想使用矩阵。_(:3」∠)_

由f(i)=f(i+1)+f(i-1)可以得出f(i+1)=f(i)-f(i-1)

又由于i>=2,从f(1)开始,于是

f(3)=(1) * f(2) + (-1) * f(1)

f(2)=(1) * f(1) + (0) * f(0)

另外要注意的是,得到的值是负数还得再处理一下。(最近总WA在这上)

 #include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#define ll __int64
using namespace std; const int mod = ;
struct matrix
{
ll x[][];
};
matrix mul(matrix a, matrix b)
{
matrix c;
c.x[][] = c.x[][] = c.x[][] = c.x[][] = ;
for( int i = ; i < ; i++)
for(int j = ; j < ; j++)
{
for(int k = ; k < ; k++)
{
c.x[i][j] += a.x[i][k] * b.x[k][j];
}
c.x[i][j] %= mod;
}
return c;
}
matrix powe(matrix x, ll n)
{
matrix r;
r.x[][] = r.x[][] = ; //注意初始化
r.x[][] = r.x[][] = ;
while(n)
{
if(n & )
r = mul(r , x);
x = mul(x , x);
n >>= ;
}
return r;
}
int main()
{ ll x, y, n, ans;
while(~scanf("%I64d%I64d%I64d", &x, &y, &n))
{
if(n == )
printf("%I64d\n",(y%mod + mod)%mod); //负数情况下的考虑
else if(n == )
printf("%I64d\n",(x%mod + mod)%mod);
else
{
matrix d;
d.x[][] = ;
d.x[][] = -;
d.x[][] = ;
d.x[][] = ; d = powe(d, n - );
ans = d.x[][] * y +d.x[][]*x;
printf("%I64d\n", (ans%mod+mod)%mod );
} }
}

Codeforces 450B div.2 Jzzhu and Sequences 矩阵快速幂or规律的更多相关文章

  1. codeforces 450B B. Jzzhu and Sequences(矩阵快速幂)

    题目链接: B. Jzzhu and Sequences time limit per test 1 second memory limit per test 256 megabytes input ...

  2. Codeforces Round #257 (Div. 2) B. Jzzhu and Sequences (矩阵快速幂)

    题目链接:http://codeforces.com/problemset/problem/450/B 题意很好懂,矩阵快速幂模版题. /* | 1, -1 | | fn | | 1, 0 | | f ...

  3. Codeforces Round #518 (Div. 1) Computer Game 倍增+矩阵快速幂

    接近于死亡的选手没有水平更博客,所以现在每五个月更一篇. 这道题呢,首先如果已经有权限升级了,那么后面肯定全部选的是 \(p_ib_i\) 最高的. 设这个值为 \(M=\max \limits_i ...

  4. Educational Codeforces Round 13 D. Iterated Linear Function (矩阵快速幂)

    题目链接:http://codeforces.com/problemset/problem/678/D 简单的矩阵快速幂模版题 矩阵是这样的: #include <bits/stdc++.h&g ...

  5. hdu 1005 Number Sequence(矩阵快速幂,找规律,模版更通用)

    题目 第一次做是看了大牛的找规律结果,如下: //显然我看了答案,循环节点是48,但是为什么是48,据说是高手打表出来的 #include<stdio.h> int main() { ], ...

  6. 51nod-1537 1537 分解(矩阵快速幂+找规律)

    题目链接: 1537 分解  问(1+sqrt(2)) ^n  能否分解成 sqrt(m) +sqrt(m-1)的形式  如果可以 输出 m%1e9+7 否则 输出no Input 一行,一个数n.( ...

  7. CodeForces 450B Jzzhu and Sequences(矩阵快速幂)题解

    思路: 之前那篇完全没想清楚,给删了,下午一上班突然想明白了. 讲一下这道题的大概思路,应该就明白矩阵快速幂是怎么回事了. 我们首先可以推导出 学过矩阵的都应该看得懂,我们把它简写成T*A(n-1)= ...

  8. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  9. Codeforces Round #536 (Div. 2) F 矩阵快速幂 + bsgs(新坑) + exgcd(新坑) + 欧拉降幂

    https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k} ...

随机推荐

  1. Eclipse/myEclipse 代码提示/自动提示/自动完成设置(转)

    一.设置超级自动提示 设置eclipse/myEclipse代码提示可以方便开发者,不用在记住拉杂的单词,只用打出首字母,就会出现提示菜单.如同dreamweaver一样方便. 1.菜单window- ...

  2. 强化学习之QLearning

    注:以下第一段代码是 文章 提供的代码,但是简书的代码粘贴下来不换行,所以我在这里贴了一遍.其原理在原文中也说得很明白了. 算个旅行商问题 基本介绍 戳 代码解释与来源 代码整个计算过程使用的以下公式 ...

  3. 周总结<6>

    周次 学习时间 新编写代码行数 博客量(篇) 学到知识点 13 10 100 2 网页设计:邻接矩阵深度以及广度遍历

  4. vue-cli脚手架搭建

    我们使用vue-cli来搭建整个项目,vue-cli就是一个脚手架,步骤很简单,输入几个命令之后就会生成整个项目,里面包括了webpack.ESLint.babel很多配置等等,省了很多事 Vue+ ...

  5. Destoon 模板存放规则 及 语法参考

    模板存放规则及语法参考 一.模板存放及调用规则 模板存放于系统 template 目录,template 目录下的一个目录例如 template/default/ 即为一套模板 模板文件以 .htm ...

  6. 详解Python闭包,装饰器及类装饰器

    在项目开发中,总会遇到在原代码的基础上添加额外的功能模块,原有的代码也许是很久以前所写,为了添加新功能的代码块,您一般还得重新熟悉源代码,稍微搞清楚一点它的逻辑,这无疑是一件特别头疼的事情.今天我们介 ...

  7. 在Delphi中动态地使用SQL查询语句 Adoquery sql 参数 冒号

    在Delphi中动态地使用SQL查询语句 在一般的数据库管理系统中,通常都需要应用SQL查询语句来提高程序的动态特性.下面介绍如何在Delphi中实现这种功能.在Delphi中,使用SQL查询语句的途 ...

  8. 动画中的id与class使用css3的优先级问题

    今天在做一个项目,用zepto给元素增加一个class,class里面有transform的效果.开始的时候,元素的样式是用id选择器写的,但是增加class之后,发现动画效果出不来,当时头好晕没想出 ...

  9. LDPC译码器的FPGA实现

    应用笔记 V0.0 2015/3/17 LDPC译码器的FPGA实现   概述   本文将介绍LDPC译码器的FPGA实现,译码器设计对应CCSDS131x1o1s文档中提到的适用于深空通信任务的LD ...

  10. Socket 传一幅图片给另一个终端

    练习Socket传文件,先添加一个组件,简化socket发送和接收文件, 获取IP和端口的类 public static class AddressHelper { /// <summary&g ...