题目链接:https://leetcode.com/problems/edit-distance/description/

题目大意:找出两个字符串之间的编辑距离(每次变化都只消耗一步)。

法一(借鉴):经典dp。代码如下(耗时15ms):

     //dp公式:dp[i][j]表示第一个字符串前i个字符到第二个字符串前j个字符的编辑距离长度
//当word1[i]==word2[j]时,dp[i][j]=dp[i-1][j-1]
//否则,dp[i][j]=min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1])+1
public int minDistance(String word1, String word2) {
int len1 = word1.length(), len2 = word2.length();
int dp[][] = new int[len1+1][len2+1];
//初始化
for(int i = 0; i <= len1; i++) {
dp[i][0] = i;
}
for(int i = 0; i <= len2; i++) {
dp[0][i] = i;
}
for(int i = 1; i <= len1; i++) {//下标从1开始
for(int j = 1; j <= len2; j++) {
if(word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
int min = Integer.MAX_VALUE;
if(min > dp[i - 1][j - 1]) {
min = dp[i - 1][j - 1];
}
if(min > dp[i][j - 1]) {
min = dp[i][j - 1];
}
if(min > dp[i - 1][j]) {
min = dp[i - 1][j];
}
dp[i][j] = min + 1;
}
}
}
return dp[len1][len2];
}

dp数组变化(例子:abc到acde的编辑距离):

0 1("a") 2("c") 3("d") 4("e")
1("a") 0(a->a) 1(a->ac) 2(a->acd) 3(a->acde)
2("b") 1(ab->a) 1(ab->ac) 2(ab->acd) 3(ab->acde)
3("c") 2(abc->a) 1(abc->ac) 2(abc->acd) 3(abc->acde)

从上表可清楚看见最后结果在dp[3][4]中。

dp数组填充顺序:从左上到右下,即每一次数值计算都要用到左边,上边,左上的数据。

72.Edit Distance---dp的更多相关文章

  1. 【Leetcode】72 Edit Distance

    72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...

  2. 刷题72. Edit Distance

    一.题目说明 题目72. Edit Distance,计算将word1转换为word2最少需要的操作.操作包含:插入一个字符,删除一个字符,替换一个字符.本题难度为Hard! 二.我的解答 这个题目一 ...

  3. [LeetCode] 72. Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  4. 72. Edit Distance

    题目: Given two words word1 and word2, find the minimum number of steps required to convert word1 to w ...

  5. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  6. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  7. 72. Edit Distance(困难,确实挺难的,但很经典,双序列DP问题)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  8. 72. Edit Distance (String; DP)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  9. [leetcode DP]72. Edit Distance

    计算最少用多少不把word1变为word2, 思路:建立一个dp表,行为word1的长度,宽为word2的长度 1.边界条件,dp[i][0] = i,dp[0][j]=j 2.最优子问题,考虑已经知 ...

  10. 第十八周 Leetcode 72. Edit Distance(HARD) O(N^2)DP

    Leetcode72 看起来比较棘手的一道题(列DP方程还是要大胆猜想..) DP方程该怎么列呢? dp[i][j]表示字符串a[0....i-1]转化为b[0....j-1]的最少距离 转移方程分三 ...

随机推荐

  1. struts 普通的action

    1.使用普通方式javaBean作为Action动作类,不需要继承任何父类,也不需要实现接口. l 方法一定是public公用的, l 返回值是字符串用来决定跳转到哪个视图 l 不需要参数 l 方法名 ...

  2. BZOJ 2152 聪聪可可(树形DP)

    给出一颗n个点带边权的树(n<=20000),求随机选择两个点,使得它们之间的路径边权是3的倍数的概率是多少. 首先总的对数是n*n,那么只需要统计路径边权是3的倍数的点对数量就行了. 考虑将无 ...

  3. 【uoj#207】共价大爷游长沙 随机化+LCT维护子树信息

    题目描述 给出一棵树和一个点对集合S,多次改变这棵树的形态.在集合中加入或删除点对,或询问集合内的每组点对之间的路径是否都经过某条给定边. 输入 输入的第一行包含一个整数 id,表示测试数据编号,如第 ...

  4. [十四]SpringBoot 之 Spring拦截器(HandlerInterceptor)

    过滤器属于Servlet范畴的API,与spring 没什么关系. Web开发中,我们除了使用 Filter 来过滤请web求外,还可以使用Spring提供的HandlerInterceptor(拦截 ...

  5. (转)Nginx图片服务器

    本文转至博客http://wenxin2009.iteye.com/blog/2117079 Nginx搭建图片服务器 Nginx下载地址:http://nginx.org/en/download.h ...

  6. 【MediaElement】WPF视频播放器【3】

    一.前言 对于<MediaElement>前两章介绍了差不多了,其实好的界面还需要UI工程师的配合,比如帮忙设计下按钮的样式等等.同样视频本身也需要吸引人,不然做的再好的播放器也没用.之后 ...

  7. BZOJ1176:[Balkan2007]Mokia——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1176 Description(题面本人自行修改了一下) 维护一个W*W的矩阵,初始值均为0.每次操作 ...

  8. 【bzoj4894】天赋

    Portal-->bzoj4894 Solution 这题的话其实,一句话题意就是求..外向树(方向是根往叶子).. 然后关于有向图的生成树计数的话,求外向树就是将度数矩阵改成入度,内向树就是改 ...

  9. Educational Codeforces Round 20 C 数学/贪心/构造

    C. Maximal GCD time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  10. 管理lnmp常用命令,lnmp重启,start|stop|reload|restart等命令

    LNMP状态管理命令: LNMP状态管理: /root/lnmp {start|stop|reload|restart|kill|status}Nginx状态管理:/etc/init.d/nginx ...