Description

Input

Output

 
 
是的、、BZOJ样例都没给。
 
 
题解(from 出题人):
  如果只考虑简单的平面图判定,这个问题是非常不好做的。

但是题目中有一个条件——这张图存在一条哈密顿回路。

我们把哈密顿回路在平面上画成一个圆。仔细观察一下。

  每条边如果画在圆内都是一条弦,那如果弦在圆内相交怎么办?把另一条弦翻出去。能不能两条弦都翻出去呢?不能,因为如果两条边在圆内相交,那么它们在圆外也会相交。那我们是不是就相当于就多了一个条件:这两条边不能同时在一个域内。
  所以,这张图中总共只有两个域,圆内和圆外。那么我们是不是就转化了模型:有若干个点和若干条边,你要给每个点黑白染色,使得每条边的两个端点颜色不同。直接DFS就可以了。还有个问题,边数是10^4,暴力连边会超时,但是平面图有一个定理:m<=3*n+6,那这个定理来剪枝就行了。

[BZOJ1997][HNOI2010] 平面图判定的更多相关文章

  1. bzoj1997 [HNOI2010]平面图判定Plana

    bzoj1997 [HNOI2010]平面图判定Planar 链接 bzoj luogu 思路 好像有很多种方法过去.我只说2-sat 环上的边,要不在里面,要不在外边. 有的边是不能同时在里面的,可 ...

  2. BZOJ1997 HNOI2010 平面图判定 planar (并查集判二分图)

    题意 判断一个存在哈密顿回路的图是否是平面图. n≤200,m≤10000n\le200,m\le10000n≤200,m≤10000 题解 如果一定存在一个环,那么连的边要么在环里面要么在外面.那么 ...

  3. P3209 [HNOI2010]平面图判定

    P3209 [HNOI2010]平面图判定 哈密尔顿环之外的任意一条边,要么连在环内部,要么连在环外部 判断两条边在同一部分会相交,则这两条边必须分开 那么把边看作点连边,跑二分图染色就行 #incl ...

  4. Luogu P3209 [HNOI2010]平面图判定(2-SAT)

    P3209 [HNOI2010]平面图判定 题意 题目描述 若能将无向图\(G=(V,E)\)画在平面上使得任意两条无重合顶点的边不相交,则称\(G\)是平面图.判定一个图是否为平面图的问题是图论中的 ...

  5. [HNOI2010]平面图判定

    Description: 若能将无向图 \(G=(V, E)\) 画在平面上使得任意两条无重合顶点的边不相交,则称 \(G\) 是平面图.判定一个图是否为平面图的问题是图论中的一个重要问题.现在假设你 ...

  6. Luogu3209 HNOI2010 平面图判定 平面图、并查集

    传送门 题意:$T$组数据,每组数据给出一个$N$个点,$M$条边,并存在一个$N$元环的图,试判断其是否为一个可平面图(如果存在一种画法,使得该图与给出的图同构且边除了在顶点处以外互相不相交,则称其 ...

  7. [HNOI2010] 平面图判定 planar

    标签:二分图判定.题解: 首先可以把题目中给你的那个环给画出来,这样就可以发现对于任意一个图来说,如果两条边要相交,就不能让他们相交,那么这两条边就要一条在里面一条在外面,如果把环画成一条链,那么就是 ...

  8. 洛谷P3209 [HNOI2010]平面图判定(2-SAT)

    传送门 看到哈密顿回路就被吓傻了……结果没有好好考虑性质…… 首先,平面图有个性质:边数小于等于$3n-6$(我也不知道为啥),边数大于这个的直接pass 然后考虑原图,先把哈密顿回路单独摘出来,就是 ...

  9. HNOI2010 平面图判定(planar)

    题目链接:戳我 我怎么知道平面图有这个性质?? 对于一个平面图,它的边数不超过点数的\(3n-6\) 所以可以直接把边数多的特判掉,剩下的图中边数和点数就是一个数量级的了. 因为这个图存在欧拉回路,所 ...

随机推荐

  1. C#实现快速排序

    网上很多关于快速排序的教程,嗯,不错,版本也很多,有的试了一下还报错..呵呵 于是乎低智商的朕花了好几天废了8张草稿纸才弄明白.. 快速排序的采用的分治啊挖坑填数啊之类的网上到处都是,具体过程自己百度 ...

  2. yii2图片处理扩展yii2-imagine的使用

    示例控制器: <?php /** * 图片常用处理 * * 需要 yii/yii2-imagine 的支持 * php composer.phar require --prefer-dist y ...

  3. 让一个图片在div中居中(四种方法)

    第一种方法: <div class="title"> <div class="flag"></div> <div cl ...

  4. 搭建Android开发环境附图详解+模拟器安装(JDK+Eclipse+SDK+ADT)

    ——搭建android开发环境的方式有多种,比如:JDK+Eclipse+SDK+ADT或者JDK+Eclipse+捆绑好的AndroidSDK或者Android Studio. Google 决定将 ...

  5. iOS三种正则表达式

    1.利用NSPredicate(谓词)匹配 例如匹配有效邮箱: NSString *email = @"nijino_saki@.com": NSString *regex = @ ...

  6. 12. UITextField

    1. UITextField 的认识 UItextField通常用于外部数据输入,以实现人机交互.比如我们QQ.微信的登录界面中让你输入账号和密码的地方 2. UITextField 控件的属性设置 ...

  7. 编译器--__attribute__ ((packed))

    1. __attribute__ ((packed)) 的作用就是告诉编译器取消结构在编译过程中的优化对齐,按照实际占用字节数进行对齐,是GCC特有的语法.这个功能是跟操作系统没关系,跟编译器有关,g ...

  8. LInux Shell 快捷键

    CTRL 键相关的快捷键: Ctrl + a - Jump to the start of the lineCtrl + b - Move back a charCtrl + c - Terminat ...

  9. 解决Trauncate table没权限

    错误信息Cannot find the object "TableName" because it does not exist or you do not have permis ...

  10. [MS SQL Server]SQL Server如何开启远程访问

    在日常工作中,经常需要连接到远程的MS SQL Server数据库中.当然也经常会出现下面的连接错误. 解决方法: 1. 设置数据库允许远程连接,数据库实例名-->右键--->属性---C ...