Max Sum Plus Plus

Time Limit: 1 Sec  Memory Limit: 256 MB

题目连接

http://acm.hdu.edu.cn/showproblem.php?pid=1024

Description

Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But
I`m lazy, I don't want to write a special-judge module, so you don't
have to output m pairs of i and j, just output the maximal summation of
sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^

Input

Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.

Output

Output the maximal summation described above in one line.

Sample Input

1 3 1 2 3
2 6 -1 4 -2 3 -2 3

Sample Output

6
8

HINT

题意

给你n个数,让你选择连续的M段,让你得到最大值

题解:

简单的想一想,dp[i][j]表示,前j个数,我选i段的最大值,那么转移方程,dp[i][j]=max(dp[i][j-1]+a[j],dp[i-1][k]+a[j])

然后滚动数组优化一下

代码:

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 1000005
#define mod 10007
#define eps 1e-9
int Num;
char CH[];
//const int inf=0x7fffffff; //нчоч╢С
const int inf=0x3f3f3f3f;
/* inline void P(int x)
{
Num=0;if(!x){putchar('0');puts("");return;}
while(x>0)CH[++Num]=x%10,x/=10;
while(Num)putchar(CH[Num--]+48);
puts("");
}
*/
//**************************************************************************************
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void P(int x)
{
Num=;if(!x){putchar('');puts("");return;}
while(x>)CH[++Num]=x%,x/=;
while(Num)putchar(CH[Num--]+);
puts("");
} int dp[maxn+];
int mmax[maxn+];
int a[maxn+];
int main()
{
int n,m;
int i,j,mmmax;
while(scanf("%d%d",&m,&n)!=EOF)
{
for(i=;i<=n;i++)
{
scanf("%d",&a[i]);
mmax[i]=;
dp[i]=;
}
dp[]=;
mmax[]=;
for(i=;i<=m;i++)
{
mmmax=-inf;
for(j=i;j<=n;j++)
{
dp[j]=max(dp[j-]+a[j],mmax[j-]+a[j]);
mmax[j-]=mmmax;
mmmax=max(mmmax,dp[j]);
}
}
printf("%d\n",mmmax); }
return ;
}

hdu 1024 Max Sum Plus Plus DP的更多相关文章

  1. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  2. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

  3. HDU 1024 Max Sum Plus Plus(m个子段的最大子段和)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/ ...

  4. HDU 1024 Max Sum Plus Plus【DP】

    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...

  5. HDU 1024 Max Sum Plus Plus(DP的简单优化)

    Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...

  6. HDU 1024 Max Sum Plus Plus(基础dp)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  7. HDU 1024 max sum plus

    A - Max Sum Plus Plus Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I6 ...

  8. HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. hdu 1003 MAX SUM 简单的dp,测试样例之间输出空行

    测试样例之间输出空行,if(t>0) cout<<endl; 这样出最后一组测试样例之外,其它么每组测试样例之后都会输出一个空行. dp[i]表示以a[i]结尾的最大值,则:dp[i ...

随机推荐

  1. ubuntu14.04安装使用NviDIA显卡驱动

    想给自己的ubuntu换N卡驱动的原因: 一方面,由于自己电脑在编译源代码8线程全开(make -j8)时,CPU温度呼呼涨到八九十度,从而常常导致系统保护自动关机,让人有点不爽.网上有说ubuntu ...

  2. 关于SQLite3 编译及交叉编译的一些问题

    from : http://blog.sina.com.cn/s/blog_5f2e119b0101ibwn.html SQLite3 (http://www.sqlite.org)是一个非常强大的小 ...

  3. c++各种排序的简单实现

    /* 直插排序 */ void InsertSort(vector<int> &arr){ for(int i = 1;i < arr.size();++i){ for(in ...

  4. Tomcat: Connector中HTTP与AJP差别与整合

    apache tomcat 整合(ajp proxy, http proxy) 1.软件: apache: httpd-2.2.17-win32-x86-openssl-0.9.8o.msi tomc ...

  5. python实现IMAP协议下email收取

    本文为转载,原文在这里. 所谓无痕取信,目前主要是指从邮箱中把信件收取后,邮箱内状态不发生任何改变.这里的状态主要是指两部分,一部分是邮件状态不变,即已读与未读状态不变,另一部分是指邮箱记录的登陆IP ...

  6. oracle 12C wmsys.wm_concat()函数

    http://blog.itpub.net/31392094/viewspace-2149577/

  7. 利用nodeJs anywhere搭建本地服务器环境【转载】

    首先去nodeJs官网下载最新版nodeJs     https://nodejs.org/en/ 安装成功后win+r打开cmd 输入node -help 或者node -v查看是否安装成功 装好后 ...

  8. vue js moment.js 过滤了双休日和法定节假日

    源码:注!原创的!!!! <template> <div id="DATE"> <ul class="dateForm" @cha ...

  9. LoadRunner中常用的字符串操作函数

    LoadRunner中常用的字符串操作函数有:                strcpy(destination_string, source_string);               strc ...

  10. 创建数据模型(View Models )和监控属性(Observables)

    Knockout是建立在以下3个核心功能之上的: 1. 属性监控与依赖跟踪 2. 声明式绑定 3. 模版机制 在本节中,我们将学习3个核心里面的第一个.但在这之前,先让我们学习一下MVVM设计模式和V ...