模板



做多项式乘法,进位

没了

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define pi acos(-1.0)
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9')c = getchar();
while(c <= '9' && c >= '0')x = x * 10 + c - '0',c = getchar();
return x * f;
}
const int maxn = 400007;
struct cp {
double x,y;
cp (double a = 0,double b = 0): x(a),y(b) {};
} A[maxn],B[maxn];
cp operator + (cp a,cp b) { return cp(a.x + b.x,a.y + b.y);}
cp operator - (cp a,cp b) { return cp(a.x - b.x,a.y - b.y);}
cp operator * (cp a,cp b) { return cp(a.x * b.x - a.y * b.y,a.x * b.y + a.y * b.x); }
void fft(cp *a,int n, int type) {
for(int i = 0,j = 0;i < n;++ i) {
if(i < j) std::swap(a[i],a[j]);
for(int k = n >> 1;(j ^= k) < k;k >>= 1);
}
for(int m = 2;m <= n;m <<= 1) {
cp w1 = cp(cos(2 * pi / m),type * sin(2 * pi / m));
for(int i = 0;i < n;i += m) {
cp w = cp(1.0,0);
for(int k = 0;k < (m >> 1);++ k) {
cp t = w * a[i + k + (m >> 1)],u = a[i + k];
a[i + k] = u + t;
a[i + k + (m >> 1)] = u - t;
w = w * w1;
}
}
}
}
int c[maxn];
char s1[maxn],s2[maxn];
int main() {
int n = read(); --n;
scanf("%s%s",s1,s2);
for(int i = 0;i <= n;++ i) A[i].x = s1[n - i] - '0',B[i].x = s2[n -i] - '0';
int tmp = n;
//printf("%d\n",n);
for(n = 1;n <= tmp * 2;n <<= 1);
//printf("%d\n",n);
fft(A,n,1);
fft(B,n,1);
/*for(int i = 0;i <= n;++ i) {
printf("%lf\n",A[i].x);
} */
for(int i = 0;i <= n;++ i) A[i] = A[i] * B[i];
fft(A,n,-1);
for(int i = 0;i <= n;++ i) c[i] = int(A[i].x / n + 0.5);
for(int i = 0;i <= n;++ i)
if(c[i] > 10) {
//printf("%d\n",c[i]);
c[i + 1] += c[i] / 10,c[i] %= 10;
if(i + 1 > n) n ++;
}
for(int i = n;i >= 0;i --)
if(!c[i]) n--;else break;
for(int i = n;i >= 0;i --) printf("%d",c[i]);
puts("");
return 0;
}

luogu P1919 【模板】A*B Problem升级版(FFT快速傅里叶)的更多相关文章

  1. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  2. P1919 【模板】A*B Problem升级版 /// FFT模板

    题目大意: 给定l,输入两个位数为l的数A B 输出两者的乘积 FFT讲解 这个讲解蛮好的 就是讲解里面贴的模板是错误的 struct cpx { double x,y; cpx(double _x= ...

  3. 【模板】A*B Problem(FFT快速傅里叶)

    题目:给出两个n位10进制整数x和y,你需要计算x*y.($n \leq 60000$) 分析: 两个正整数的相乘可以视为两个多项式的相乘, 例如 $15 \times 16 = 240$, 可写成 ...

  4. 【洛谷P1919】A*B Problem升级版

    题目大意:rt 题解:将长度为 N 的大整数看作是一个 N-1 次的多项式,利用 FFT 计算多项式的卷积即可. 代码如下 #include <bits/stdc++.h> using n ...

  5. 洛谷P1919 【模板】A*B Problem升级版 题解(FFT的第一次实战)

    洛谷P1919 [模板]A*B Problem升级版(FFT快速傅里叶) 刚学了FFT,我们来刷一道模板题. 题目描述 给定两个长度为 n 的两个十进制数,求它们的乘积. n<=100000 如 ...

  6. 【luogu P3803】【模板】多项式乘法(FFT)

    [模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...

  7. luoguP1919 A*B Problem升级版 ntt

    luoguP1919 A*B Problem升级版 链接 luogu 思路 ntt模板题 代码 #include <bits/stdc++.h> #define ll long long ...

  8. hdu 1402 A * B Problem Plus FFT

    /* hdu 1402 A * B Problem Plus FFT 这是我的第二道FFT的题 第一题是完全照着别人的代码敲出来的,也不明白是什么意思 这个代码是在前一题的基础上改的 做完这个题,我才 ...

  9. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

  10. [luogu P3384] [模板]树链剖分

    [luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点 ...

随机推荐

  1. [BZOJ1911][BZOJ1912][BZOJ1913]APIO2010解题报告

    特别行动队 Description   这个好像斜率优化不是一般地明显了啊...只不过要分a的正负两种情况考虑是维护上凸还是下凸 /********************************** ...

  2. Docker 配置国内镜像拉取中心,Configure docker to use faster registries in China.

    Networking in China is really bad when it comes to using some cloud based tools like docker, it's us ...

  3. 2017ACM暑期多校联合训练 - Team 6 1011 HDU 6106 Classes (容斥公式)

    题目链接 Problem Description The school set up three elective courses, assuming that these courses are A ...

  4. NYOJ 1012 RMQ with Shifts (线段树)

    题目链接 In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each q ...

  5. 一款已上市MMO手游地图同步方案总结

    1. 客户端地图格子的相关知识 在2.5D的MMO游戏里,角色是通过3D的方式渲染,2D的地图是通过2D的方式显示,所以在客户端一般会有三个坐标系: a) 3D坐标系:所有需要3D渲染的角色和光效,都 ...

  6. 好消息! 不用再羡慕Python有jupyter 我R也有Notebook了【附演示视频】

    熟悉python的朋友可能知道jupyter notebook.它是一个Web应用程序,允许你创建和共享代码,方程,可视化和说明性文本文档.现在,我们可以在RStudio中实现R Notebook的功 ...

  7. python基础===用9种方式生成新的对象

    class Point: def __init__(self, x, y): self.x = x self.y = y point1 = Point(1, 2) point2 = eval(&quo ...

  8. KVC, KVO 实现原理

    Key-Value Coding: 键值编码 (KVC) 方法调用: // 对象属性 // 类似: Person -> name setValue: forKey: // 对象的属性或者 属性的 ...

  9. 2017百度春招<不等式排列>

    题目: 度度熊最近对全排列特别感兴趣,对于1到n的一个排列,度度熊发现可以在中间根据大小关系插入合适的大于和小于符号(即 '>' 和 '<' )使其成为一个合法的不等式数列.但是现在度度熊 ...

  10. 安全控制 iptables

    转自:http://www.opsers.org/linux-home/videos/chapter-netfilter-iptables-raiders.html 内容简介防火墙的概述iptable ...