关于OpenCV的stitching使用
配置环境:VS2010+OpenCV2.4.9
为了使用OpenCV实现图像拼接头痛了好长时间,一直都没时间做,今天下定决心去实现基本的图像拼接。
首先,看一看使用OpenCV进行拼接的方法
基本都是用Stitcher类中的stitch方法。下面是网上的代码,同时也是opencv\samples\cpp\stitching.cpp的代码。
#include <iostream>
#include <fstream>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/stitcher.hpp" using namespace std;
using namespace cv; bool try_use_gpu = false;
vector<Mat> imgs;
string result_name = "result.jpg"; void printUsage();
int parseCmdArgs(int argc, char** argv); int main(int argc, char* argv[])
{
int retval = parseCmdArgs(argc, argv);
if (retval) return -; Mat pano;
Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
Stitcher::Status status = stitcher.stitch(imgs, pano); if (status != Stitcher::OK)
{
cout << "Can't stitch images, error code = " << int(status) << endl;
return -;
} imwrite(result_name, pano);
return ;
} void printUsage()
{
cout <<
"Rotation model images stitcher.\n\n"
"stitching img1 img2 [...imgN]\n\n"
"Flags:\n"
" --try_use_gpu (yes|no)\n"
" Try to use GPU. The default value is 'no'. All default values\n"
" are for CPU mode.\n"
" --output <result_img>\n"
" The default is 'result.jpg'.\n";
} int parseCmdArgs(int argc, char** argv)
{
if (argc == )
{
printUsage();
return -;
}
for (int i = ; i < argc; ++i)
{
if (string(argv[i]) == "--help" || string(argv[i]) == "/?")
{
printUsage();
return -;
}
else if (string(argv[i]) == "--try_use_gpu")
{
if (string(argv[i + ]) == "no")
try_use_gpu = false;
else if (string(argv[i + ]) == "yes")
try_use_gpu = true;
else
{
cout << "Bad --try_use_gpu flag value\n";
return -;
}
i++;
}
else if (string(argv[i]) == "--output")
{
result_name = argv[i + ];
i++;
}
else
{
Mat img = imread(argv[i]);
if (img.empty())
{
cout << "Can't read image '" << argv[i] << "'\n";
return -;
}
imgs.push_back(img);
}
}
return ;
}
感觉这个说的比较繁琐,我就改写成了下面的代码
#include <iostream>
#include <fstream>
#include <opencv2/core/core.hpp>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/stitcher.hpp"
#include<Windows.h> using namespace std;
using namespace cv; bool try_use_gpu = false;
vector<Mat> imgs;
string result_name = "result.jpg"; int main()
{
Mat img1=imread("1.jpg");
Mat img2=imread("2.jpg");
imgs.push_back(img1);
imgs.push_back(img2);
Mat pano;
Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
Stitcher::Status status = stitcher.stitch(imgs, pano);
if (status != Stitcher::OK)
{
cout << "Can't stitch images, error code = " << status << endl;
return -;
}
namedWindow(result_name);
imshow(result_name,pano);
imwrite(result_name,pano);
waitKey();
return ;
}
下面看一下原图和效果图,(以四张原图为例,分为左上,右上,左下,右下)




效果图如下:

可以发现代码中最关键的两句就是:
Stitcher stitcher = Stitcher::createDefault(try_use_gpu);Stitcher::Status status = stitcher.stitch(imgs, pano);Stitcher是OpenCV的一个类,下面看一下这个类的源代码:
class CV_EXPORTS Stitcher
{
public:
enum { ORIG_RESOL = - };
enum Status { OK, ERR_NEED_MORE_IMGS }; // Creates stitcher with default parameters
static Stitcher createDefault(bool try_use_gpu = false); Status estimateTransform(InputArray images);
Status estimateTransform(InputArray images, const std::vector<std::vector<Rect> > &rois); Status composePanorama(OutputArray pano);
Status composePanorama(InputArray images, OutputArray pano); Status stitch(InputArray images, OutputArray pano);
Status stitch(InputArray images, const std::vector<std::vector<Rect> > &rois, OutputArray pano); double registrationResol() const { return registr_resol_; }
void setRegistrationResol(double resol_mpx) { registr_resol_ = resol_mpx; } double seamEstimationResol() const { return seam_est_resol_; }
void setSeamEstimationResol(double resol_mpx) { seam_est_resol_ = resol_mpx; } double compositingResol() const { return compose_resol_; }
void setCompositingResol(double resol_mpx) { compose_resol_ = resol_mpx; } double panoConfidenceThresh() const { return conf_thresh_; }
void setPanoConfidenceThresh(double conf_thresh) { conf_thresh_ = conf_thresh; } bool waveCorrection() const { return do_wave_correct_; }
void setWaveCorrection(bool flag) { do_wave_correct_ = flag; } detail::WaveCorrectKind waveCorrectKind() const { return wave_correct_kind_; }
void setWaveCorrectKind(detail::WaveCorrectKind kind) { wave_correct_kind_ = kind; } Ptr<detail::FeaturesFinder> featuresFinder() { return features_finder_; }
const Ptr<detail::FeaturesFinder> featuresFinder() const { return features_finder_; }
void setFeaturesFinder(Ptr<detail::FeaturesFinder> features_finder)
{ features_finder_ = features_finder; } Ptr<detail::FeaturesMatcher> featuresMatcher() { return features_matcher_; }
const Ptr<detail::FeaturesMatcher> featuresMatcher() const { return features_matcher_; }
void setFeaturesMatcher(Ptr<detail::FeaturesMatcher> features_matcher)
{ features_matcher_ = features_matcher; } const cv::Mat& matchingMask() const { return matching_mask_; }
void setMatchingMask(const cv::Mat &mask)
{
CV_Assert(mask.type() == CV_8U && mask.cols == mask.rows);
matching_mask_ = mask.clone();
} Ptr<detail::BundleAdjusterBase> bundleAdjuster() { return bundle_adjuster_; }
const Ptr<detail::BundleAdjusterBase> bundleAdjuster() const { return bundle_adjuster_; }
void setBundleAdjuster(Ptr<detail::BundleAdjusterBase> bundle_adjuster)
{ bundle_adjuster_ = bundle_adjuster; } Ptr<WarperCreator> warper() { return warper_; }
const Ptr<WarperCreator> warper() const { return warper_; }
void setWarper(Ptr<WarperCreator> warper) { warper_ = warper; } Ptr<detail::ExposureCompensator> exposureCompensator() { return exposure_comp_; }
const Ptr<detail::ExposureCompensator> exposureCompensator() const { return exposure_comp_; }
void setExposureCompensator(Ptr<detail::ExposureCompensator> exposure_comp)
{ exposure_comp_ = exposure_comp; } Ptr<detail::SeamFinder> seamFinder() { return seam_finder_; }
const Ptr<detail::SeamFinder> seamFinder() const { return seam_finder_; }
void setSeamFinder(Ptr<detail::SeamFinder> seam_finder) { seam_finder_ = seam_finder; } Ptr<detail::Blender> blender() { return blender_; }
const Ptr<detail::Blender> blender() const { return blender_; }
void setBlender(Ptr<detail::Blender> blender) { blender_ = blender; } private:
/* hidden */
};
可以看到Stitcher大致有这些成员函数:createDefault,estimateTransform,composePanorama,stitch等等。
Stitcher stitcher = Stitcher::createDefault(try_use_gpu);这句话表示使用默认参数创建Stitcher类的对象stitcher,try_use_gpu表示是否打开GPU,默认不打开,即try_use_gpu=false;下面是这个函数的原型:
C++: Stitcher Stitcher::createDefault(bool try_use_gpu=false)参数:Flag indicating whether GPU should be used whenever it’s possible.return:Stitcher class instance.(即创建了一个对象)Stitcher::Status status = stitcher.stitch(imgs, pano);这句话表示:try to stitch the given imagesC++: Status Stitcher::stitch(InputArray images, OutputArray pano)
C++: Status Stitcher::stitch(InputArray images, const std::vector<std::vector<Rect>>& rois, OutputArray pano)
参数:images – Input images.
rois – Region of interest rectangles.(感兴趣区)
pano – Final pano.
return:Status code.(数据成员中枚举数组的一项)
|
Stitcher::estimateTransform和Stitcher::composePanorama的使用为高级使用,需要清楚Stitching pipeline的过程。
下面贴出pipeline:

可以看出这个过程很复杂,需要涉及到很多的算法,比如:特征点的提取、特征点匹配、图像融合等等。这些过程OpenCV都为我们封装在Stitcher类中,不在此细述。
总结
虽然用OpenCV中的Stitcher类实现了基本的拼接,但是有一个最大的问题是,运行的效率是极低的,就这个代码中,拼接3张图片差不多用了一分钟,这在需要做实时拼接的时候是根本不可能使用的,所以后面需要做的工作任然是弄清楚Stitching pipeline的详细过程,进一步优化代码,提高拼接运行效率。
下面贴出参考资料:
http://docs.opencv.org/2.4.2/modules/stitching/doc/high_level.html
下面贴出源代码和OpenCV中的stiching.cpp和stitching_detailed.cpp的下载地址:
http://download.csdn.net/detail/u013637931/8255767
转自:http://www.cnblogs.com/CHLL55/p/4161551.html
关于OpenCV的stitching使用的更多相关文章
- opencv笔记--stitching模块
opencv 提供了全景图像拼接的所有实现,包括: 1)stitching 模块提供了图像拼接过程中所需要的基本元素,该模块主要依赖于 features2d 模块: 2)提供了 stitching_d ...
- matlab调用opencv函数的配置
环境: VS2010 活动解决方案平台x64 WIN 8.1 Opencv 2.4.3 Matlab 2012a 1. 首先保证vs2010能正确调用opencv函数, 2. Matlab中选择编 ...
- Stitching模块中对特征提取的封装解析(以ORB特性为例)
titching模块中对特征提取的封装解析(以ORB特性为例) OpenCV中Stitching模块(图像拼接模块)的拼接过程可以用PipeLine来进行描述,是一个比较复杂的过程.在这个过程 ...
- 图像拼接(image stitching)
# OpenCV中stitching的使用 OpenCV提供了高级别的函数封装在Stitcher类中,使用很方便,不用考虑太多的细节. 低级别函数封装在detail命名空间中,展示了OpenCV算法实 ...
- (kate)win8-64位系统下opencv-2.4.3的安装以及在visual_studio2010中配置
环境: 操作系统:window8.1 64bit Opencv版本:OPencv-2.4.3 VS版本:vs 2010 一.安装Opencv 1.Opencv官网http://opencv.org/ ...
- ubuntu 16.04 安装Opencv-3.2.0_GPU 与 opencv_contrib-3.2.0
1.准备依赖库 sudo apt-get install build-essential sudo apt-get install cmake git libgtk2.0-dev pkg-config ...
- 利用OpenCV实现图像拼接Stitching模块讲解
https://zhuanlan.zhihu.com/p/71777362 1.1 图像拼接基本步骤 图像拼接的完整流程如上所示,首先对输入图像提取鲁棒的特征点,并根据特征描述子完成特征点的匹配,然后 ...
- Mac-OSX的Python3.5虚拟环境下安装Opencv
Mac-OSX的Python3.5虚拟环境下安装Opencv 1 关键词 关键词:Mac,OSX,Python3.5,Virtualenv,Opencv 2 概述 本文是一篇 环境搭建 的基础 ...
- OpenCV安装与配置
本文使用OpenCV2.48在win10平台下操作. 一,关于OpenCV OpenCV是开源C++计算机可视化处理库,它集成了很多计算机图形图像处理的功能.还有机器学习,字符识别,人脸识别,物体检测 ...
随机推荐
- QSS 样式示例:QTreeWidget, QComboBox,QSlider,QSpinBox
目录 Image 填充整个控件的区域 QTreeWidget QSpinbox 的上翻下翻按钮和箭头 QComboBox 的设置,大坑 QSlider 最近需要对一个软件加上Qt界面和 的样式,第一次 ...
- Python基础灬序列(字符串、列表、元组)
序列 序列是指它的成员都是有序排列,并且可以通过下标偏移量访问到它的一个或几个成员.序列包含字符串.列表.元组. 字符串 chinese_zodiac = '鼠牛虎兔龙蛇马羊猴鸡狗猪' print(c ...
- 微软职位内部推荐-Senior Software Engineer II-Search
微软近期Open的职位: Do you want to work on a fast-cycle, high visibility, hardcore search team with ambitio ...
- 月薪45K的Python爬虫工程师告诉你爬虫应该怎么学,太详细了!
想用Python做爬虫,而你却还不会Python的话,那么这些入门基础知识必不可少.很多小伙伴,特别是在学校的学生,接触到爬虫之后就感觉这个好厉害的样子,我要学.但是却完全不知道从何开始,很迷茫,学的 ...
- 【转】SWFUpload使用指南
原文出自:http://www.runoob.com/w3cnote/swfupload-guide.html SWFUpload是一个flash和js相结合而成的文件上传插件,其功能非常强大.以前在 ...
- 关于XML文档操作类
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.X ...
- 多源最短路——Floyd算法
Floyd算法 问题的提出:已知一个有向网(或者无向网),对每一对定点vi!=vj,要求求出vi与vj之间的最短路径和最短路径的长度. 解决该问题有以下两种方法: (1)轮流以每一个定点为源点,重复执 ...
- “Hello World!团队”Beta发布—视频链接+文案+美工
视频链接:http://v.youku.com/v_show/id_XMzE3MjEyMzkyMA==.html?spm=a2h3j.8428770.3416059.1 文案+美工:http://ww ...
- “Hello World!”团队第五周第三次会议
今天是我们团队“Hello World!”团队第五周召开的第三次会议. 双十一大家过的怎么样?由于组内其他成员被“剁手”,今日会议记录由我来写. 博客内容: 一.会议时间 二.会议地点 三.会议成员 ...
- 福大软工1816:Beta(7/7)
Beta 冲刺 (7/7) 队名:第三视角 组长博客链接 本次作业链接 团队部分 团队燃尽图 工作情况汇报 张扬(组长) 过去两天完成了哪些任务 文字/口头描述 组织会议 wxpy中多个功能的开发 整 ...