配置环境:VS2010+OpenCV2.4.9

为了使用OpenCV实现图像拼接头痛了好长时间,一直都没时间做,今天下定决心去实现基本的图像拼接。

首先,看一看使用OpenCV进行拼接的方法

基本都是用Stitcher类中的stitch方法。下面是网上的代码,同时也是opencv\samples\cpp\stitching.cpp的代码。

 #include <iostream>
#include <fstream>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/stitcher.hpp" using namespace std;
using namespace cv; bool try_use_gpu = false;
vector<Mat> imgs;
string result_name = "result.jpg"; void printUsage();
int parseCmdArgs(int argc, char** argv); int main(int argc, char* argv[])
{
int retval = parseCmdArgs(argc, argv);
if (retval) return -; Mat pano;
Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
Stitcher::Status status = stitcher.stitch(imgs, pano); if (status != Stitcher::OK)
{
cout << "Can't stitch images, error code = " << int(status) << endl;
return -;
} imwrite(result_name, pano);
return ;
} void printUsage()
{
cout <<
"Rotation model images stitcher.\n\n"
"stitching img1 img2 [...imgN]\n\n"
"Flags:\n"
" --try_use_gpu (yes|no)\n"
" Try to use GPU. The default value is 'no'. All default values\n"
" are for CPU mode.\n"
" --output <result_img>\n"
" The default is 'result.jpg'.\n";
} int parseCmdArgs(int argc, char** argv)
{
if (argc == )
{
printUsage();
return -;
}
for (int i = ; i < argc; ++i)
{
if (string(argv[i]) == "--help" || string(argv[i]) == "/?")
{
printUsage();
return -;
}
else if (string(argv[i]) == "--try_use_gpu")
{
if (string(argv[i + ]) == "no")
try_use_gpu = false;
else if (string(argv[i + ]) == "yes")
try_use_gpu = true;
else
{
cout << "Bad --try_use_gpu flag value\n";
return -;
}
i++;
}
else if (string(argv[i]) == "--output")
{
result_name = argv[i + ];
i++;
}
else
{
Mat img = imread(argv[i]);
if (img.empty())
{
cout << "Can't read image '" << argv[i] << "'\n";
return -;
}
imgs.push_back(img);
}
}
return ;
}
   

 感觉这个说的比较繁琐,我就改写成了下面的代码

 #include <iostream>
#include <fstream>
#include <opencv2/core/core.hpp>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/stitcher.hpp"
#include<Windows.h> using namespace std;
using namespace cv; bool try_use_gpu = false;
vector<Mat> imgs;
string result_name = "result.jpg"; int main()
{
Mat img1=imread("1.jpg");
Mat img2=imread("2.jpg");
imgs.push_back(img1);
imgs.push_back(img2);
Mat pano;
Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
Stitcher::Status status = stitcher.stitch(imgs, pano);
if (status != Stitcher::OK)
{
cout << "Can't stitch images, error code = " << status << endl;
return -;
}
namedWindow(result_name);
imshow(result_name,pano);
imwrite(result_name,pano);
waitKey();
return ;
}
   

下面看一下原图和效果图,(以四张原图为例,分为左上,右上,左下,右下)

效果图如下:

    

  可以发现代码中最关键的两句就是:

Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
Stitcher::Status status = stitcher.stitch(imgs, pano);
   

  Stitcher是OpenCV的一个类,下面看一下这个类的源代码:

class CV_EXPORTS Stitcher
{
public:
enum { ORIG_RESOL = - };
enum Status { OK, ERR_NEED_MORE_IMGS }; // Creates stitcher with default parameters
static Stitcher createDefault(bool try_use_gpu = false); Status estimateTransform(InputArray images);
Status estimateTransform(InputArray images, const std::vector<std::vector<Rect> > &rois); Status composePanorama(OutputArray pano);
Status composePanorama(InputArray images, OutputArray pano); Status stitch(InputArray images, OutputArray pano);
Status stitch(InputArray images, const std::vector<std::vector<Rect> > &rois, OutputArray pano); double registrationResol() const { return registr_resol_; }
void setRegistrationResol(double resol_mpx) { registr_resol_ = resol_mpx; } double seamEstimationResol() const { return seam_est_resol_; }
void setSeamEstimationResol(double resol_mpx) { seam_est_resol_ = resol_mpx; } double compositingResol() const { return compose_resol_; }
void setCompositingResol(double resol_mpx) { compose_resol_ = resol_mpx; } double panoConfidenceThresh() const { return conf_thresh_; }
void setPanoConfidenceThresh(double conf_thresh) { conf_thresh_ = conf_thresh; } bool waveCorrection() const { return do_wave_correct_; }
void setWaveCorrection(bool flag) { do_wave_correct_ = flag; } detail::WaveCorrectKind waveCorrectKind() const { return wave_correct_kind_; }
void setWaveCorrectKind(detail::WaveCorrectKind kind) { wave_correct_kind_ = kind; } Ptr<detail::FeaturesFinder> featuresFinder() { return features_finder_; }
const Ptr<detail::FeaturesFinder> featuresFinder() const { return features_finder_; }
void setFeaturesFinder(Ptr<detail::FeaturesFinder> features_finder)
{ features_finder_ = features_finder; } Ptr<detail::FeaturesMatcher> featuresMatcher() { return features_matcher_; }
const Ptr<detail::FeaturesMatcher> featuresMatcher() const { return features_matcher_; }
void setFeaturesMatcher(Ptr<detail::FeaturesMatcher> features_matcher)
{ features_matcher_ = features_matcher; } const cv::Mat& matchingMask() const { return matching_mask_; }
void setMatchingMask(const cv::Mat &mask)
{
CV_Assert(mask.type() == CV_8U && mask.cols == mask.rows);
matching_mask_ = mask.clone();
} Ptr<detail::BundleAdjusterBase> bundleAdjuster() { return bundle_adjuster_; }
const Ptr<detail::BundleAdjusterBase> bundleAdjuster() const { return bundle_adjuster_; }
void setBundleAdjuster(Ptr<detail::BundleAdjusterBase> bundle_adjuster)
{ bundle_adjuster_ = bundle_adjuster; } Ptr<WarperCreator> warper() { return warper_; }
const Ptr<WarperCreator> warper() const { return warper_; }
void setWarper(Ptr<WarperCreator> warper) { warper_ = warper; } Ptr<detail::ExposureCompensator> exposureCompensator() { return exposure_comp_; }
const Ptr<detail::ExposureCompensator> exposureCompensator() const { return exposure_comp_; }
void setExposureCompensator(Ptr<detail::ExposureCompensator> exposure_comp)
{ exposure_comp_ = exposure_comp; } Ptr<detail::SeamFinder> seamFinder() { return seam_finder_; }
const Ptr<detail::SeamFinder> seamFinder() const { return seam_finder_; }
void setSeamFinder(Ptr<detail::SeamFinder> seam_finder) { seam_finder_ = seam_finder; } Ptr<detail::Blender> blender() { return blender_; }
const Ptr<detail::Blender> blender() const { return blender_; }
void setBlender(Ptr<detail::Blender> blender) { blender_ = blender; } private:
/* hidden */
};
   

  

可以看到Stitcher大致有这些成员函数:createDefault,estimateTransform,composePanorama,stitch等等。

Stitcher stitcher = Stitcher::createDefault(try_use_gpu);这句话表示使用默认参数创建Stitcher类的对象stitcher,try_use_gpu表示是否打开GPU,默认不打开,即try_use_gpu=false;下面是这个函数的原型:

 
C++: Stitcher Stitcher::createDefault(bool try_use_gpu=false)
参数:Flag indicating whether GPU should be used whenever it’s possible.
return:Stitcher class instance.(即创建了一个对象)
 
Stitcher::Status status = stitcher.stitch(imgs, pano);这句话表示:try to stitch the given images
 
C++: Status Stitcher::stitch(InputArray images, OutputArray pano)
C++: Status Stitcher::stitch(InputArray images, const std::vector<std::vector<Rect>>& rois, OutputArray pano)
参数:images – Input images.
   rois – Region of interest rectangles.(感兴趣区)
pano – Final pano.
return:Status code.(数据成员中枚举数组的一项)

 
   
   
   

  Stitcher::estimateTransform和Stitcher::composePanorama的使用为高级使用,需要清楚Stitching pipeline的过程。

下面贴出pipeline:

可以看出这个过程很复杂,需要涉及到很多的算法,比如:特征点的提取、特征点匹配、图像融合等等。这些过程OpenCV都为我们封装在Stitcher类中,不在此细述。

总结

虽然用OpenCV中的Stitcher类实现了基本的拼接,但是有一个最大的问题是,运行的效率是极低的,就这个代码中,拼接3张图片差不多用了一分钟,这在需要做实时拼接的时候是根本不可能使用的,所以后面需要做的工作任然是弄清楚Stitching pipeline的详细过程,进一步优化代码,提高拼接运行效率。

下面贴出参考资料:

http://docs.opencv.org/2.4.2/modules/stitching/doc/high_level.html

下面贴出源代码和OpenCV中的stiching.cpp和stitching_detailed.cpp的下载地址:

http://download.csdn.net/detail/u013637931/8255767

转自:http://www.cnblogs.com/CHLL55/p/4161551.html

关于OpenCV的stitching使用的更多相关文章

  1. opencv笔记--stitching模块

    opencv 提供了全景图像拼接的所有实现,包括: 1)stitching 模块提供了图像拼接过程中所需要的基本元素,该模块主要依赖于 features2d 模块: 2)提供了 stitching_d ...

  2. matlab调用opencv函数的配置

    环境: VS2010 活动解决方案平台x64 WIN 8.1 Opencv 2.4.3 Matlab 2012a 1.  首先保证vs2010能正确调用opencv函数, 2.  Matlab中选择编 ...

  3. Stitching模块中对特征提取的封装解析(以ORB特性为例)

    titching模块中对特征提取的封装解析(以ORB特性为例)     OpenCV中Stitching模块(图像拼接模块)的拼接过程可以用PipeLine来进行描述,是一个比较复杂的过程.在这个过程 ...

  4. 图像拼接(image stitching)

    # OpenCV中stitching的使用 OpenCV提供了高级别的函数封装在Stitcher类中,使用很方便,不用考虑太多的细节. 低级别函数封装在detail命名空间中,展示了OpenCV算法实 ...

  5. (kate)win8-64位系统下opencv-2.4.3的安装以及在visual_studio2010中配置

    环境: 操作系统:window8.1 64bit Opencv版本:OPencv-2.4.3 VS版本:vs 2010 一.安装Opencv 1.Opencv官网http://opencv.org/ ...

  6. ubuntu 16.04 安装Opencv-3.2.0_GPU 与 opencv_contrib-3.2.0

    1.准备依赖库 sudo apt-get install build-essential sudo apt-get install cmake git libgtk2.0-dev pkg-config ...

  7. 利用OpenCV实现图像拼接Stitching模块讲解

    https://zhuanlan.zhihu.com/p/71777362 1.1 图像拼接基本步骤 图像拼接的完整流程如上所示,首先对输入图像提取鲁棒的特征点,并根据特征描述子完成特征点的匹配,然后 ...

  8. Mac-OSX的Python3.5虚拟环境下安装Opencv

    Mac-OSX的Python3.5虚拟环境下安装Opencv 1   关键词 关键词:Mac,OSX,Python3.5,Virtualenv,Opencv 2   概述 本文是一篇 环境搭建 的基础 ...

  9. OpenCV安装与配置

    本文使用OpenCV2.48在win10平台下操作. 一,关于OpenCV OpenCV是开源C++计算机可视化处理库,它集成了很多计算机图形图像处理的功能.还有机器学习,字符识别,人脸识别,物体检测 ...

随机推荐

  1. RabbitMQ各协议异同详解

    一.官网介绍 Which protocols does RabbitMQ support? RabbitMQ supports several messaging protocols, directl ...

  2. Bellman-ford 模板

    #include<bits/stdc++.h> const int inf=0x3f3f3f3f; ; struct edge{ int u,v;//两个点 int w; //权值 Edg ...

  3. 用 Python 3 的 async / await 做异步编程

    前年我曾写过一篇<初探 Python 3 的异步 IO 编程>,当时只是初步接触了一下 yield from 语法和 asyncio 标准库.前些日子我在 V2EX 看到一篇<为什么 ...

  4. ECharts之force力导向布局图——数据源说明及后端API约定

    Echarts ? 关于 Echarts 请移步这里 force 力导向图 实现方式,如: function require_EC () { require( [ 'echarts', //载入for ...

  5. BFC的表象认识

    首先字面翻译,这三个字母分别代表什么,box,formatting, context,它决定了元素如何对其内容进行定位,以及与其他元素的关系和相互作用. 形象点就是说一种规范,规范什么呢?规范盒子内部 ...

  6. 20181016-4 Alpha阶段第2周/共2周 Scrum立会报告+燃尽图 05

    作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2288 Scrum master:王硕 一.小组介绍 组长:王一可 组员:范 ...

  7. 作业2-MathExam V2.0

    MathExam V2.0 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 20 50 • ...

  8. 评价Win8自带输入法

    对于人机交互设计,有以下四个基本原则:从用户角度考虑.从头到尾记住用户选择.短期刺激和长期使用的好处坏处.不让用户犯简单错误.我用的最多的是我的系统自带的输入法,评价的也只能是它了. 1.从用户角度: ...

  9. Beta版软件使用说明

    1引言 1 .1编写目的 编写本使用说明的目的是充分叙述本软件所能实现的功能及其运行环境,以便使用者了解本软件的使用范围和使用方法,并为软件的维护和更新提供必要的信息. 1 .2参考资料 1 .3术语 ...

  10. 测试bug

    模板在运行时出现了以下 1 个错误:---------------------------Controller.tt(-1,-1) : error : 获取 AppDomain 以便从主机运行转换时出 ...