洛谷3195(HNOI2008)玩具装箱
题目:https://www.luogu.org/problemnew/show/P3195
自己做斜率优化的第一道题。
推成斜率优化的样子很重要。
斜率优化的样子就是从 j 中求 i 的话,关系式里一个量只和 i 有关,一个量只和 j 有关,一个量同时和 i 与 j 有关。
这时可以把那个 同时和 i 与 j 有关的量 里的和 j 有关的量看成 x[ j ],把只和 j 有关的量看成 y[ j ],然后只和 i 有关的量就是截距、x[ j ]前面的就是式子里的斜率。
(为了推出这样的式子,可以设a,b等等,帮助自己推。大体思路是将与 i 或 j 或 i 和 j 有关的东西看成一个整体)
推出式子以后,找合适的 j 就是 j - 1 与 j 的斜率比式子里的斜率大(或小),而 j 与 j + 1 的斜率比式子里的斜率小(或大)的那个 j 。
找到 j 以后把式子变变形就得到推出dp[ i ] 的式子了。
可用单调队列。
把a什么的写成函数很方便。
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
#define db double
using namespace std;
const int N=;
int n,L,h=,t=,q[N];
ll s[N],dp[N];
db a(int i){return s[i]+i;}
db b(int i){return s[i]+i+L+;}
db x(int i){return b(i);}
db y(int i){return b(i)*b(i)+dp[i];}
db slope(int j,int i){return (y(i)-y(j))/(x(i)-x(j));}
int main()
{
scanf("%d%d",&n,&L);ll z;
for(int i=;i<=n;i++)
{
scanf("%lld",&z);s[i]=s[i-]+z;
}
for(int i=;i<=n;i++)
{
while(h<t&&slope(q[h],q[h+])<*a(i))h++;
dp[i]=(a(i)-b(q[h]))*(a(i)-b(q[h]))+dp[q[h]];
while(t>h&&slope(q[t-],q[t])>slope(q[t-],i))t--;
q[++t]=i;
}
printf("%lld",dp[n]);
return ;
}
洛谷3195(HNOI2008)玩具装箱的更多相关文章
- 洛谷3195 [HNOI2008]玩具装箱TOY(斜率优化+dp)
qwq斜率优化好题 第一步还是考虑最朴素的\(dp\) \[dp=dp[j]+(i-j-1+sum[i]-sum[j])^2 \] 设\(f[i]=sum[i]+i\) 那么考虑将上述柿子变成$$dp ...
- 斜率优化dp学习笔记 洛谷P3915[HNOI2008]玩具装箱toy
本文为原创??? 作者写这篇文章的时候刚刚初一毕业…… 如有错误请各位大佬指正 从例题入手 洛谷P3915[HNOI2008]玩具装箱toy Step0:读题 Q:暴力? 如果您学习过dp 不难推出d ...
- 洛谷 P3195 [HNOI2008] 玩具装箱
链接: P3195 题意: 给出 \(n\) 个物品及其权值 \(c\),连续的物品可以放进一个容器,如果将 \(i\sim j\) 的物品放进一个容器,产生的费用是 \(\left(j-i+\sum ...
- 洛谷P3195 [HNOI2008] 玩具装箱 [DP,斜率优化,单调队列优化]
题目传送门 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- [洛谷P3195][HNOI2008]玩具装箱TOY
题目大意:有n个物体,大小为$c_i$.把第i个到第j个放到一起,容器的长度为$x=j-i+\sum\limits_{k-i}^{j} c_k$,若长度为x,费用为$(x-L)^2$.费用最小. 题解 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY 斜率优化
Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 100000 ...
- 洛谷 P3195 [HNOI2008]玩具装箱TOY
题意简述 有n个物体,第i个长度为ci 将n个物体分为若干组,每组必须连续 如果把i到j的物品分到一组,则该组长度为 \( j - i + \sum\limits_{k = i}^{j}ck \) 求 ...
随机推荐
- 1-16-1 LVM管理和ssm存储管理器使用&磁盘配额
大纲: 1-1- LVM逻辑卷的管理 1-2- SSM管理工具的使用 1-3- 磁盘配额技巧 ====================================== 问题描述: 当我们需要在一个 ...
- 三十二 Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy的暂停与重启
scrapy的每一个爬虫,暂停时可以记录暂停状态以及爬取了哪些url,重启时可以从暂停状态开始爬取过的URL不在爬取 实现暂停与重启记录状态 1.首先cd进入到scrapy项目里 2.在scrapy项 ...
- 安装Linux环境
虚拟机:虚拟机(Virtual Machine),在计算机科学中的体系结构里,是指一种特殊的软件,他可以在计算机平台和终端用户之间建立一种环境,而终端用户则是基于这个软件所建立的环境来操作软件.在计算 ...
- Struts2异常处理配置
<package name="lee" extends="struts-default"> <!--定义全局结构映射 --> <g ...
- laravel中新建文件并保存数据到文件中
//base_path()获取当前的绝对路径 $path=base_path().'\config\web.php'; $str='abcdefg'; //要声明的字符串 file_put_conte ...
- 普通用户开通sudo权限:xxx is not in the sudoers file.This incident will be reported.的解决方法
1.切换到root用户下,怎么切换就不用说了吧,不会的自己百度去. 2.添加sudo文件的写权限,命令是: chmod u+w /etc/sudoers 3.编辑sudoers文件 vi /etc/s ...
- ETL学习整理 PostgreSQL
ETL分别是“Extract”.“ Transform” .“Load”三个单词的首字母缩写也就是“抽取”.“转换”.“装载”,但我们日常往往简称其为数据抽取. ETL是BI/DW(商务智能/数据仓库 ...
- React之状态(state)与生命周期
很多时候,我们的页面数据是动态的.所以,我们需要实时渲染页面: 一.用定时函数setInterval() 组件(输出当前时间): index.js: 这样每隔1秒页面就会重新渲染一次,这样传进去的时间 ...
- js中top、self、parent
1.在应用iframe或者frameset的时候 parent指的是父窗口.top指的是顶级的窗口.self指的是当前的窗口-window window.self 功能:是对当前窗口自身的引用.它和w ...
- TypeError: pivot_table() got an unexpected keyword argument 'rows'
利用Python进行数据分析>第二章,处理MovieLens 1M数据集,有句代码总是报错: mean_rating = data.pivot_table('rating', rows='tit ...