题目链接:HDU 1028

Problem Description

"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:

N=a[1]+a[2]+a[3]+...+a[m];

a[i]>0,1<=m<=N;

My question is how many different equations you can find for a given N.

For example, assume N is 4, we can find:

4 = 4;

4 = 3 + 1;

4 = 2 + 2;

4 = 2 + 1 + 1;

4 = 1 + 1 + 1 + 1;

so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

Input

The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.

Output

For each test case, you have to output a line contains an integer P which indicate the different equations you have found.

Sample Input

4
10
20

Sample Output

5
42
627

Solution

题意

给定 \(n\),求 \(n\) 的划分数。

思路

普通母函数。母函数 \(G(x) = (1+x+x^2+...)(1+x^2+x^4+...)(1+x^3+x^6+...)...\)。

\((1+x+x^2+...)=(x^{0\times1}+x^{1\times1}+x^{2\times1}+...)\) 代表不用数字 \(1\),用一次数字 \(1\),用两次数字 \(1\)……

动态规划的版本见这里

Code

#include <bits/stdc++.h>
using namespace std;
const int maxn = 200; int c1[maxn], c2[maxn]; void init() {
for(int i = 0; i < maxn; ++i) {
c1[i] = 1;
c2[i] = 0;
}
for(int i = 2; i < maxn; ++i) {
for(int j = 0; j < maxn; ++j) {
for(int k = 0; k + j < maxn; k += i) {
c2[k + j] += c1[j];
}
}
for(int j = 0; j < maxn; ++j) {
c1[j] = c2[j];
c2[j] = 0;
}
}
} int main() {
init();
int n;
while(~scanf("%d", &n)) {
printf("%d\n", c1[n]);
}
return 0;
}

HDU 1028 Ignatius and the Princess III (生成函数/母函数)的更多相关文章

  1. HDU 1028 Ignatius and the Princess III (母函数或者dp,找规律,)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  2. 题解报告:hdu 1028 Ignatius and the Princess III(母函数or计数DP)

    Problem Description "Well, it seems the first problem is too easy. I will let you know how fool ...

  3. hdu 1028 Ignatius and the Princess III(母函数入门+模板)

    Description "Well, it seems the first problem is too easy. I will let you know how foolish you ...

  4. HDU 1028 Ignatius and the Princess III(母函数整数拆分)

    链接:传送门 题意:一个数n有多少种拆分方法 思路:典型母函数在整数拆分上的应用 /********************************************************** ...

  5. hdu 1028 Ignatius and the Princess III(母函数)

    题意: N=a[1]+a[2]+a[3]+...+a[m];  a[i]>0,1<=m<=N; 例如: 4 = 4;  4 = 3 + 1;  4 = 2 + 2;  4 = 2 + ...

  6. hdu 1028 Ignatius and the Princess III 简单dp

    题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是 ...

  7. HDU 1028 Ignatius and the Princess III 整数的划分问题(打表或者记忆化搜索)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1028 Ignatius and the Princess III Time Limit: 2000/1 ...

  8. hdu 1028 Ignatius and the Princess III(DP)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  9. hdu 1028 Ignatius and the Princess III 母函数

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

随机推荐

  1. [Bzoj1014][JSOI2008]火星人prefix(无旋Treap&hash)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1014 因为涉及到增加和修改,所以后缀数组就被pass掉了,想到的就是平衡树维护hash值 ...

  2. Codeforces Round #529 (Div. 3) E. Almost Regular Bracket Sequence (思维)

    Codeforces Round #529 (Div. 3) 题目传送门 题意: 给你由左右括号组成的字符串,问你有多少处括号翻转过来是合法的序列 思路: 这么考虑: 如果是左括号 1)整个序列左括号 ...

  3. direct模式下的收发

    生产者 import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host='loc ...

  4. NGUI的widget的使用

    一,我们看看widget有什么属性,如下图: 二,Pivot是什么意思? 我们都知道在Untiy3D中有一个中央坐标点,而这个Pivot这个就是选择控件的某一个点与中央坐标点定位. 如下图区别: 当你 ...

  5. MySQL 新建用户和数据库

    MySQL 新建用户和数据库 修改MySql的密码为qwe123 /usr/local/bin/mysqladmin -u root -p password qwe123 mysql设置root远程访 ...

  6. LeetCode Array Easy 448. Find All Numbers Disappeared in an Array

    Description Given an array of integers where 1 ≤ a[i] ≤ n (n = size of array), some elements appear ...

  7. RabbitMQ ——消息属性Properties

    简介 发送消息可以为消息指定一些参数 Delivery mode: 是否持久化,1 - Non-persistent,2 - Persistent Headers:Headers can have a ...

  8. 高手教您编写简单的JSON解析器

    编写JSON解析器是熟悉解析技术的最简单方法之一.格式非常简单.它是递归定义的,所以与解析Brainfuck相比,你会遇到轻微的挑战 ; 你可能已经使用JSON.除了最后一点之外,解析 Scheme的 ...

  9. python在windows中运行文件

    "d:Program Files\python35\python.exe" hello.txt

  10. 操作数据库结构Sql语句

    新建表: create table [表名] ( ,) PRIMARY KEY , ) default '默认值' null , [字段2] ntext null , [字段3] datetime, ...