Codeforces 722E 组合数学 DP
题意:有一个n * m的棋盘,你初始在点(1, 1),你需要去点(n, m)。你初始有s分,在这个棋盘上有k个点,经过一次这个点分数就会变为s / 2(向上取整),问从起点到终点的分数的数学期望是多少?
思路:按照套路,先把这k个点按照pair的方式进行排序,设dp[i][j]为从起点到点i之前经过了至少j个减分点,到点i的数学期望。那么所有在它之前的可以向它转移的点向它转移。那么dp[i][j] = Σ(dp[u][j - 1] - dp[u][j]) * g(u, i)。其中g(u, i)是u, i之间没有限制条件的走法数目,用组合数学的方法计算即可。这样相当于是前面恰好走过j个点 + 可能走过大于一个点的方式转移过来,这样可以保证计数的不重不漏。
代码:
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define db double
#define LL long long
#define pii pair<int, int>
using namespace std;
const int maxn = 200010;
const LL mod = 1e9 + 7;
LL dp[2010][40];
pii a[2010];
LL v[maxn], inv[maxn];
LL qpow(LL x, LL y) {
LL ans = 1;
for (; y; y >>= 1) {
if(y & 1) ans = (ans * x) % mod;
x = (x * x) % mod;
}
return ans;
}
void init(int n) {
v[0] = 1;
for (int i = 1; i <= n; i++) {
v[i] = (v[i - 1] * i) % mod;
}
inv[n] = qpow(v[n], mod - 2);
for (int i = n - 1; i >= 0; i--) {
inv[i] = (inv[i + 1] * (i + 1)) % mod;
}
}
LL C(LL n, LL m) {
return (((v[n] * inv[m]) % mod) * inv[n - m]) % mod;
}
LL cal(int x, int y) {
LL tmp = abs(a[y].first - a[x].first), tmp1 = tmp + (a[y].second - a[x].second);
return C(tmp1, tmp);
}
LL b[50];
int main() {
int n, m, k, t;
scanf("%d%d%d%d", &n, &m, &k, &t);
init(n + m);
for (int i = 1; i <= k; i++) {
scanf("%d%d", &a[i].first, &a[i].second);
}
int lim = 0;
while(t > 1) {
b[++lim] = t;
t = (t + 1) / 2;
}
b[++lim] = 1;
b[lim + 1] = 1;
sort(a + 1, a + 1 + k);
k++;
a[k] = make_pair(n, m);
for (int i = 1; i <= k; i++) {
dp[i][0] = C(a[i].first + a[i].second - 2, a[i].first - 1);
}
LL ans = 0;
for (int j = 1; j <= lim; j++) {
for (int i = 1; i <= k; i++) {
for (int t = 1; t < i; t++) {
if(a[t].first <= a[i].first && a[t].second <= a[i].second) {
LL tmp1 = (dp[t][j - 1] - dp[t][j] + mod) % mod;
LL tmp2 = cal(t, i);
assert(tmp1 >= 0);
assert(tmp2 >= 0);
dp[i][j] += (tmp1 * tmp2) % mod;
dp[i][j] %= mod;
}
}
}
}
for (int i = 0; i <= lim; i++) {
ans = (ans + (((dp[k][i] - dp[k][i + 1] + mod) % mod) * b[i + 1]) % mod) % mod;
}
ans = (ans * qpow(C(n + m - 2, n - 1), mod - 2)) % mod;
printf("%lld\n", ans);
}
Codeforces 722E 组合数学 DP的更多相关文章
- codeforces 1194F (组合数学)
Codeforces 11194F (组合数学) 传送门:https://codeforces.com/contest/1194/problem/F 题意: 你有n个事件,你需要按照1~n的顺序完成这 ...
- codeforces 722E Research Rover
codeforces 722E Research Rover 题意 \(1e5*1e5\)的棋盘中有\(2000\)个坏点,初始给定一个值\(s(1<=s<=1e6)\).从棋盘左上角走到 ...
- 【uoj#22】[UR #1]外星人 组合数学+dp
题目描述 给你一个长度为 $n$ 的序列 $\{a_i\}$ 和一个数 $x$ ,对于任意一个 $1\sim n$ 的排列 $\{p_i\}$ ,从 $1$ 到 $n$ 依次执行 $x=x\ \tex ...
- 【bzoj1925】[Sdoi2010]地精部落 组合数学+dp
题目描述 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到 ...
- Codeforces Gym 100338H High Speed Trains 组合数学+dp+高精度
原题链接:http://codeforces.com/gym/100338/attachments/download/2136/20062007-winter-petrozavodsk-camp-an ...
- D - Yet Another Problem On a Subsequence CodeForces - 1000D (DP,组合数学)
D - Yet Another Problem On a Subsequence CodeForces - 1000D The sequence of integers a1,a2,-,aka1,a2 ...
- codeforces 659 G. Fence Divercity 组合数学 dp
http://codeforces.com/problemset/problem/659/G 思路: f(i,0/1,0/1) 表示到了第i个,要被切的块开始了没有,结束了没有的状态的方案数 递推看代 ...
- Codeforces 886E Maximum Element 组合数学 + dp
我们定义dp[ i ]表示长度为 i 的序列, 最后没有一个==k的时候返回的方案数, 也就是最后强制返回 i 的方案数. 我们能得到dp方程 dp[ i ] = sum(dp[ i - j - ...
- codeforces 869C The Intriguing Obsession【组合数学+dp+第二类斯特林公式】
C. The Intriguing Obsession time limit per test 1 second memory limit per test 256 megabytes input s ...
随机推荐
- Task8.循环和递归神经网络
RNN提出的背景: RNN通过每层之间节点的连接结构来记忆之前的信息,并利用这些信息来影响后面节点的输出.RNN可充分挖掘序列数据中的时序信息以及语义信息,这种在处理时序数据时比全连接神经网络和CNN ...
- 定时任务crond
在服务器上使用crond完成定时操作很方便, 下面简单记录一下. 常用的命令主要有以下三个: (1)编辑定时任务 crontab -e (2) 查看定时任务 crontab -l (3) 删除定 ...
- NoSQL数据库的分布式算法详解
系统的可扩展性是推动NoSQL运动发展的的主要理由,包含了分布式系统协调,故障转移,资源管理和许多其他特性.这么讲使得NoSQL听起来像是一个大筐,什么都能塞进去.尽管NoSQL运动并没有给分布式数据 ...
- python全栈开发,Day40(进程间通信(队列和管道),进程间的数据共享Manager,进程池Pool)
昨日内容回顾 进程 multiprocess Process —— 进程 在python中创建一个进程的模块 start daemon 守护进程 join 等待子进程执行结束 锁 Lock acqui ...
- 【説明する】DS
其实就是数据结构课后题整理....只会一个是什么鬼 染色问题: 线段树? 功能太强大了! 我们并不需要那么多的功能 运用并查集!!! 将相同的并为一段 BZOJ 2375(讲真我没找到这个题在哪里.. ...
- Linux系统中imp导入dmp文件
[oracle@ocm1 ~]$ lltotal 32-rw-r--r-- 1 oracle oinstall 24576 Mar 27 15:26 COUNTRIES.dmpdrwxr-xr-x 2 ...
- Oracle中动态SQL详解(EXECUTE IMMEDIATE)
Oracle中动态SQL详解(EXECUTE IMMEDIATE) 2017年05月02日 18:35:48 悠悠倾我心 阅读数:744 标签: oracle动态sqloracle 更多 个人分类: ...
- Flask学习 1创建第一个页面
#!/usr/bin/env python # encoding: utf-8 """ @version: v1.0 @author: cxa @file: hello. ...
- linux中awk 详解
一.awk简介 awk是一个非常好用的数据处理工具,相对于sed常常作用于一整个行的处理,awk则比较倾向于一行当中分成数个[字段]处理,因此,awk相当适合处理小型的数据数据处理.awk是一种报表生 ...
- day25—JavaScript实现文件拖拽上传案例实践
转行学开发,代码100天——2018-04-10 今天记录一个利用JavaScript实现文件拖拽上传到浏览器,后天将文件打开的小案例. 基本功能:1点击添加文件 2 文件拖拽添加 html: < ...