题意

给出一张图,q个询问,每次询问给出uv,找出一条路径,使这条路径上的最大边权是两点所有路径中最小,输出这个值

思路

很显然要先求出最小生成树,任意两点在最小生成树上有唯一路径,并且这条路径上的最大边权就是所输出的值,接下来就是如何求出树上任意两点唯一路径中的最大边权了,先把最小生成树转化为有根树,并用fa数组表示u的父亲节点,cost数组表示与父亲节点连的边的边权,dep数组表示这个点的深度,对于每次查询,先把两点的深度调到一样大,同时更新最大边,然后一起向上搜索直到两点的最近公共祖先,同时也更新最大边。这就是最朴素的求LCA的方法。

C++代码

#include <bits/stdc++.h>
using namespace std; const int maxn = 1e5 + ; struct Edge{
int from,to;
int w,nxt;
}edge[maxn << ],e[maxn << ]; int n , m ;
int pre[maxn];
int fa[maxn],cost[maxn],dep[maxn];
int head[maxn],tot; void init(){
tot = ;
memset(head,-,sizeof head);
for(int i = ;i <= n ; i++){
pre[i] = i;
}
} bool cmp(Edge a,Edge b){
return a.w < b.w;
} void add_edge(int u ,int v,int w){
e[tot].from = u;
e[tot].to = v;
e[tot].w = w;
e[tot].nxt = head[u];
head[u] = tot ++;
} inline int find(int x){if(x == pre[x])return x;else return pre[x] = find(pre[x]);} void kruskal(){
sort(edge+,edge++m,cmp);
int fu,fv,u,v;
for(int i = ;i <= m; i++){
u = edge[i].from;
v = edge[i].to;
fu = find(u);
fv = find(v);
if(fu != fv){
pre[fu] = fv;
add_edge(u,v,edge[i].w);
add_edge(v,u,edge[i].w);
}
}
} void dfs(int u,int Fa,int step){
int v;
for(int i = head[u]; ~i ;i = e[i].nxt){
v = e[i].to;
if(v ==Fa) continue;
dep[v] = step;
fa[v] = u;
cost[v] = e[i].w;
dfs(v,u,step + );
}
} int lca(int u,int v){
int du = dep[u];
int dv = dep[v];
int res = ;
while(du > dv){
res = max(res,cost[u]);
u = fa[u];
du --;
}
while(dv > du){
res = max(res,cost[v]);
v = fa[v];
dv --;
}
while(u != v){
res = max(res,cost[u]);
res = max(res,cost[v]);
u = fa[u];
v = fa[v];
}
return res;
} int main(){
int cas = ;
while(cin >> n >> m){
if(cas) puts("");
else cas ++;
init();
for(int i = ;i <= m; i ++){
int u , v , w;
cin >> u >> v >> w;
edge[i].from = u;
edge[i].to = v;
edge[i].w = w;
}
//cout << 1 ;
kruskal();
fa[] = cost[] = dep[] = ;
dfs(,-,);
int q;
cin >> q;
while(q--){
int u , v ;
cin >> u >> v;
cout << lca(u,v) << endl;
}
}
return ;
}

UVA 11354 Bond 最小生成树 + lca的更多相关文章

  1. UVA 11354 - Bond (最小生成树 + 树链剖分)

    题目链接~~> 做题感悟:这题開始看到时感觉不是树不优点理,一想能够用 Kruskal 处理成树 ,然后就好攻克了. 解题思路: 先用 Kruskal 处理出最小生成树.然后用树链剖分 + 线段 ...

  2. 训练指南 UVA - 11354(最小生成树 + 倍增LCA)

    layout: post title: 训练指南 UVA - 11354(最小生成树 + 倍增LCA) author: "luowentaoaa" catalog: true ma ...

  3. uva 11354 - Bond(树链拆分)

    题目链接:uva 11354 - Bond 题目大意:给定一张图.每次询问两个节点路径上进过边的危急值的最大值的最小值. 解题思路:首先建立最小生成数,然后依据这棵树做树链剖分. #include & ...

  4. UVA - 11354 Bond(最小生成树+LCA+瓶颈路)

    题意:N个点,M条路,每条路的危险度为路上各段中最大的危险度.多组询问,点s到点t的所有路径中最小的危险度. 分析: 1.首先建个最小生成树,则s到t的路径一定是危险度最小的. 原因:建最小生成树的最 ...

  5. UVA 11354 Bond(MST + LCA)

    n<=50000, m<=100000的无向图,对于Q<=50000个询问,每次求q->p的瓶颈路. 其实求瓶颈路数组maxcost[u][v]有用邻接矩阵prim的方法.但是 ...

  6. UVA 11354 Bond(最小瓶颈路+倍增)

    题意:问图上任意两点(u,v)之间的路径上,所经过的最大边权最小为多少? 求最小瓶颈路,既是求最小生成树.因为要处理多组询问,所以需要用倍增加速. 先处理出最小生成树,prim的时间复杂度为O(n*n ...

  7. uva 11354 Bond

    题意: 邦德在逃命!他在一个有N个城市,由M条边连接的道路网中.一条路的危险度被定义为这条路上危险度最大的边的危险度. 现在给出若干个询问,s,t,问从s到t的最小的危险度是多少. 思路: 首先可以证 ...

  8. UVA 11354 Bond 邦德 (RMQ,最小瓶颈MST)

    题意: n个城市,m条路,每条路有个危险值,要使得从s走到t的危险值最小.回答q个询问,每个询问有s和t,要求输出从s到t最小的危险值.(5万个点,10万条边) 思路: 其实要求的是任意点对之间的最小 ...

  9. Bond UVA - 11354(LCA应用题)

    Once again, James Bond is on his way to saving the world. Bond's latest mission requires him to trav ...

随机推荐

  1. HDU 6651 Final Exam

    hdu题面 Time limit 2000 ms Memory limit 524288 kB OS Windows 吐槽 比赛时候晕死了-- 解题思路 先留坑 公式法 https://blog.cs ...

  2. Android应用源码航空订票软件客户端

    功能分类:其他     支持平台:Android     运行环境:Android 开发语言:Java     开发工具:Eclipse     源码大小:1.76MB   下载地址:http://w ...

  3. 大数据笔记(二十五)——Scala函数式编程

    ===================== Scala函数式编程 ======================== 一.Scala中的函数 (*) 函数是Scala中的头等公民,就和数字一样,可以在变 ...

  4. mysql 数据增删改的总结

    一.在MySQL管理软件中,可以通过SQL语句中的DML语言来实现数据的操作,包括 1.使用INSERT实现数据的插入2.UPDATE实现数据的更新3.使用DELETE实现数据的删除4.使用SELEC ...

  5. Java的LinkedList底层源码分析

    首先我们先说一下,源码里可以看出此类不仅仅用双向链表实现了队列数据结构的功能,还提供了链表数据结构的功能.

  6. 进程间通信(IPC)-管道、匿名管道

    每个进程都有各自的地址空间,任何一个进程的全局变量在另一个进程中都看不到 所以进程之间要交换数据必须通过内核,在内核中开辟一块缓冲区,进程1把数据从用户空间拷到内核缓冲区,进程2再从内核缓冲区把数据读 ...

  7. SQL Server新老版本CE区别

    对比CE7和2014 CE12的区别: 1.表连接中连接列估算方式 老CE对所有参与连接列的统计信息step进行逐个估算.新CE只对于最大和最小step统计信息进行收集估算,在连接列的值分布不均匀的时 ...

  8. php 防盗链

    防盗链的技术已经很普遍了,有些网站不喜欢自己的图片被别的网站直接复制使用,便使用了防盗链的技术,这样别人在直接复制使用网站图片时,图片便会按照程序的设定不显示或显示防盗链等字样. 使用了防盗链技术,不 ...

  9. js fuction函数内return一个内部函数详解

    今天在网上,看到一篇关于js函数难点的文章,js函数的一些难点.在那上面提了一下,关于js函数返回另一个函数的问题,并附上了一道面试题: var add = function(x){ var sum  ...

  10. 一、基础篇--1.1Java基础-反射的用途和实现

    https://blog.csdn.net/SongYuxinIT/article/details/81872066 反射的核心是JVM在运行时才动态加载类或调用方法/访问属性,它不需要事先(写代码的 ...