UVA 11354 Bond 最小生成树 + lca
题意
给出一张图,q个询问,每次询问给出uv,找出一条路径,使这条路径上的最大边权是两点所有路径中最小,输出这个值
思路
很显然要先求出最小生成树,任意两点在最小生成树上有唯一路径,并且这条路径上的最大边权就是所输出的值,接下来就是如何求出树上任意两点唯一路径中的最大边权了,先把最小生成树转化为有根树,并用fa数组表示u的父亲节点,cost数组表示与父亲节点连的边的边权,dep数组表示这个点的深度,对于每次查询,先把两点的深度调到一样大,同时更新最大边,然后一起向上搜索直到两点的最近公共祖先,同时也更新最大边。这就是最朴素的求LCA的方法。
C++代码
#include <bits/stdc++.h>
using namespace std; const int maxn = 1e5 + ; struct Edge{
int from,to;
int w,nxt;
}edge[maxn << ],e[maxn << ]; int n , m ;
int pre[maxn];
int fa[maxn],cost[maxn],dep[maxn];
int head[maxn],tot; void init(){
tot = ;
memset(head,-,sizeof head);
for(int i = ;i <= n ; i++){
pre[i] = i;
}
} bool cmp(Edge a,Edge b){
return a.w < b.w;
} void add_edge(int u ,int v,int w){
e[tot].from = u;
e[tot].to = v;
e[tot].w = w;
e[tot].nxt = head[u];
head[u] = tot ++;
} inline int find(int x){if(x == pre[x])return x;else return pre[x] = find(pre[x]);} void kruskal(){
sort(edge+,edge++m,cmp);
int fu,fv,u,v;
for(int i = ;i <= m; i++){
u = edge[i].from;
v = edge[i].to;
fu = find(u);
fv = find(v);
if(fu != fv){
pre[fu] = fv;
add_edge(u,v,edge[i].w);
add_edge(v,u,edge[i].w);
}
}
} void dfs(int u,int Fa,int step){
int v;
for(int i = head[u]; ~i ;i = e[i].nxt){
v = e[i].to;
if(v ==Fa) continue;
dep[v] = step;
fa[v] = u;
cost[v] = e[i].w;
dfs(v,u,step + );
}
} int lca(int u,int v){
int du = dep[u];
int dv = dep[v];
int res = ;
while(du > dv){
res = max(res,cost[u]);
u = fa[u];
du --;
}
while(dv > du){
res = max(res,cost[v]);
v = fa[v];
dv --;
}
while(u != v){
res = max(res,cost[u]);
res = max(res,cost[v]);
u = fa[u];
v = fa[v];
}
return res;
} int main(){
int cas = ;
while(cin >> n >> m){
if(cas) puts("");
else cas ++;
init();
for(int i = ;i <= m; i ++){
int u , v , w;
cin >> u >> v >> w;
edge[i].from = u;
edge[i].to = v;
edge[i].w = w;
}
//cout << 1 ;
kruskal();
fa[] = cost[] = dep[] = ;
dfs(,-,);
int q;
cin >> q;
while(q--){
int u , v ;
cin >> u >> v;
cout << lca(u,v) << endl;
}
}
return ;
}
UVA 11354 Bond 最小生成树 + lca的更多相关文章
- UVA 11354 - Bond (最小生成树 + 树链剖分)
题目链接~~> 做题感悟:这题開始看到时感觉不是树不优点理,一想能够用 Kruskal 处理成树 ,然后就好攻克了. 解题思路: 先用 Kruskal 处理出最小生成树.然后用树链剖分 + 线段 ...
- 训练指南 UVA - 11354(最小生成树 + 倍增LCA)
layout: post title: 训练指南 UVA - 11354(最小生成树 + 倍增LCA) author: "luowentaoaa" catalog: true ma ...
- uva 11354 - Bond(树链拆分)
题目链接:uva 11354 - Bond 题目大意:给定一张图.每次询问两个节点路径上进过边的危急值的最大值的最小值. 解题思路:首先建立最小生成数,然后依据这棵树做树链剖分. #include & ...
- UVA - 11354 Bond(最小生成树+LCA+瓶颈路)
题意:N个点,M条路,每条路的危险度为路上各段中最大的危险度.多组询问,点s到点t的所有路径中最小的危险度. 分析: 1.首先建个最小生成树,则s到t的路径一定是危险度最小的. 原因:建最小生成树的最 ...
- UVA 11354 Bond(MST + LCA)
n<=50000, m<=100000的无向图,对于Q<=50000个询问,每次求q->p的瓶颈路. 其实求瓶颈路数组maxcost[u][v]有用邻接矩阵prim的方法.但是 ...
- UVA 11354 Bond(最小瓶颈路+倍增)
题意:问图上任意两点(u,v)之间的路径上,所经过的最大边权最小为多少? 求最小瓶颈路,既是求最小生成树.因为要处理多组询问,所以需要用倍增加速. 先处理出最小生成树,prim的时间复杂度为O(n*n ...
- uva 11354 Bond
题意: 邦德在逃命!他在一个有N个城市,由M条边连接的道路网中.一条路的危险度被定义为这条路上危险度最大的边的危险度. 现在给出若干个询问,s,t,问从s到t的最小的危险度是多少. 思路: 首先可以证 ...
- UVA 11354 Bond 邦德 (RMQ,最小瓶颈MST)
题意: n个城市,m条路,每条路有个危险值,要使得从s走到t的危险值最小.回答q个询问,每个询问有s和t,要求输出从s到t最小的危险值.(5万个点,10万条边) 思路: 其实要求的是任意点对之间的最小 ...
- Bond UVA - 11354(LCA应用题)
Once again, James Bond is on his way to saving the world. Bond's latest mission requires him to trav ...
随机推荐
- keras学习笔记-bili莫烦
一.keras的backend设置 有两种方式: 1.修改JSON配置文件 修改~/.keras/keras.json文件内容为: { "iamge_dim_ordering":& ...
- 【gym102394L】LRU Algorithm(自然溢出哈希)
题意:给定一个n个数的数字序列,第i个数为a[i],每次操作会将a[i]插入或移到最前端: 1.若a[i]已经在序列中出现过,则将其移到最前端,并删除原出现位置 2.若a[i]未出现过,则直接将其插入 ...
- Codechef TRIPS Children Trips (分块、倍增)
题目链接: https://www.codechef.com/problems/TRIPS 感觉CC有点毒瘤啊.. 题解: 首先有一个性质可能是因为太傻所以网上没人解释,然而我看了半天: 就是正序和倒 ...
- 损坏的RAID5
损坏的RAID5 string讀入卡cin 関同步 ios::sync_with_stdio(false) 由塊號映射到具體位置 塊號id對應第col個字符串 字符串開始的位置st #include& ...
- 官方转译:截止2018-12-10,chromedriver与chrome对应关系表
谷歌驱动下载地址: http://npm.taobao.org/mirrors/chromedriver/ http://chromedriver.storage.googleapis.com/ind ...
- ERROR 1044 (42000): Access denied for user ''@'localhost' to database 'ambari'
配置Ambari远程maridb 报错: ERROR 1044 (42000): Access denied for user ''@'localhost' to database 'ambari' ...
- 《Effective Java》读书笔记 - 5.泛型
Chapter 5 Generics Item 23: Don't use raw types in new code 虽然你可以把一个List<String>传给一个List类型(raw ...
- React Native商城项目实战03 - 包装Navigator
1.在Home目录下新建首页详细页HomeDetail.js /** * 首页详情页 */ import React, { Component } from 'react'; import { App ...
- Unsupervised Image-to-Image Translation Networks
Abstract: 无监督图像到图像的翻译目的是学习不同域图像的一个联合分布,通过使用来自单独域图像的边缘分布.给定一个边缘分布,可以得到很多种联合分布.如果不加入额外的假设条件的话,从边缘分布无法推 ...
- jest 提示 Unexpected identifier 的解决方案
概述 今天在玩 jest 的时候,发现用 import 就会报 Unexpected identifier 的错误.查了很久的资料,最后终于解决了. 参考资料:Jest tests can't pro ...