【leetcode】1230.Toss Strange Coins
题目如下:
You have some coins. The
i
-th coin has a probabilityprob[i]
of facing heads when tossed.Return the probability that the number of coins facing heads equals
target
if you toss every coin exactly once.Example 1:
Input: prob = [0.4], target = 1
Output: 0.40000Example 2:
Input: prob = [0.5,0.5,0.5,0.5,0.5], target = 0
Output: 0.03125Constraints:
1 <= prob.length <= 1000
0 <= prob[i] <= 1
0 <= target
<= prob.length
- Answers will be accepted as correct if they are within
10^-5
of the correct answer.
解题思路:动态规划。首先假设dp[i][j]为投完第i枚硬币后有j枚硬币朝上的概率。如果第i-1枚硬币投完后有j枚朝上,那么第i枚硬币就只能朝下;如果i-1枚硬币投完后有j-1枚朝上,那么第i枚硬币就只能朝上。很容易建立状态转移方程,dp[i][j] = dp[i-1][j-1] * prob[i] + dp[i-1][j] * (1 - prob[i])。
代码如下:
class Solution(object):
def probabilityOfHeads(self, prob, target):
"""
:type prob: List[float]
:type target: int
:rtype: float
"""
dp = [[0]*(len(prob) + 1) for _ in prob] dp[0][0] = 1 - prob[0]
dp[0][1] = prob[0] for i in range(1,len(prob)):
for j in range(min(target+1,len(prob))):
if j == 0:
dp[i][j] = float(dp[i-1][j]) * (1 - prob[i])
continue
dp[i][j] = float(dp[i-1][j-1]) * prob[i] + float(dp[i-1][j]) * (1 - prob[i])
return dp[-1][target]
【leetcode】1230.Toss Strange Coins的更多相关文章
- 【LeetCode】518. Coin Change 2 解题报告(Python)
[LeetCode]518. Coin Change 2 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目 ...
- 【LeetCode】Minimum Depth of Binary Tree 二叉树的最小深度 java
[LeetCode]Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum dept ...
- 【Leetcode】Pascal's Triangle II
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Return [1,3 ...
- 53. Maximum Subarray【leetcode】
53. Maximum Subarray[leetcode] Find the contiguous subarray within an array (containing at least one ...
- 27. Remove Element【leetcode】
27. Remove Element[leetcode] Given an array and a value, remove all instances of that value in place ...
- 【刷题】【LeetCode】007-整数反转-easy
[刷题][LeetCode]总 用动画的形式呈现解LeetCode题目的思路 参考链接-空 007-整数反转 方法: 弹出和推入数字 & 溢出前进行检查 思路: 我们可以一次构建反转整数的一位 ...
- 【刷题】【LeetCode】000-十大经典排序算法
[刷题][LeetCode]总 用动画的形式呈现解LeetCode题目的思路 参考链接 000-十大经典排序算法
- 【leetcode】893. Groups of Special-Equivalent Strings
Algorithm [leetcode]893. Groups of Special-Equivalent Strings https://leetcode.com/problems/groups-o ...
- 【leetcode】657. Robot Return to Origin
Algorithm [leetcode]657. Robot Return to Origin https://leetcode.com/problems/robot-return-to-origin ...
随机推荐
- pytest -- 测试的参数化
目录 1. @pytest.mark.parametrize标记 1.1. empty_parameter_set_mark选项 1.2. 多个标记组合 1.3. 标记测试模块 2. pytest_g ...
- 剑指OFFER数据结构与算法分类
目录 数据结构 算法 数据结构 数组 有序二维数组查找 数组相对位置排序 数组顺时针输出 把数组排成最小的数 数组中的逆序对 扑克牌顺子 数组中重复的数字 构建乘积数组 链表 链表反向插入ArrayL ...
- Java中遍历容器List、Map、Set的方法总结
List List<String> list = new ArrayList<>(); list.add("张三"); list.add("李四& ...
- 企业应用学习-git学习
1.git的基本使用 git与svn的区别 GIT 是分布式的,SVN 不是:这是 GIT 和其它非分布式的版本控制系统,例如 SVN,CVS 等,最核心的区别. GIT 把内容按元数据方式存储,而 ...
- SVM的推导和理解
主要记录了SVM思想的理解,关键环节的推导过程,主要是作为准备面试的需要. 1.准备知识-点到直线距离 点\(x_0\)到超平面(直线)\(w^Tx+b=0\)的距离,可通过如下公式计算: \[ d ...
- JAVA 编程思想一
1: 动态绑定和静态绑定 使用private或static或final修饰的变量或者方法,使用静态绑定.而虚方法(可以被子类重写的方法)则会根据运行时的对象进行动态绑定: 静态绑定使用类信息来完成,而 ...
- 滚动翻页vue
<template> <div class="home"> <div style="height:100%; width:100%;&quo ...
- linux挂载 mount
挂载(mounting)是指由操作系统使一个存储设备(诸如硬盘.CD-ROM或共享资源)上的计算机文件和目录可供用户通过计算机的文件系统访问的一个过程. Linux系统下目录和磁盘是分开的,磁盘上的文 ...
- xc语言l博客作业03
问题 答案 这个作业属于那个课程 c语言程序设计ll 这个作业要求在哪里 https://edu.cnblogs.com/campus/zswxy/CST2019-4/homework/8719 我在 ...
- Mybatis(一) 入门
对原生态jdbc程序中问题总结 创建mysql数据库 jdbc程序 使用jdbc查询mysql数据库中用户表的记录. 创建java工程,加入jar包 数据库驱动包 第一个是mysql驱动 第二个是or ...