为什么MongoDB适合大数据的存储?
NoSQL数据库都被贴上不同用途的标签,如MongoDB和CouchDB都是面向文档的数据库,但这并不意味着它们可以象JSON(JavaScript Object Notation,JavaScript对象标记)那样以结构化数据形式存储文本文档。
JSON被认为是XML的代替品,它是一个轻量级的,基于文本交换数据的标准,和XML一样具有人类易读的特性。简单的JSON数据结构叫做对象,可能包括多种数据类型,如整型(int),字符串(string),数组(array),日期(date),对象(object)和字节数组(bytearray)。
面向文档的数据库与关系数据库有着显著的区别,面向文档的数据库用一个有组织的文件来存储数据,而不是用行来存储数据,在MongoDB中,一组文档被看作是一个集合,在关系数据库中,许多行的集合被看作是一张表。
但同时它们的操作又是类似的,关系数据库使用select,insert,update和delete操作表中的数据,面向文档的数据库使用query,insert,update和remove做意义相同的操作。
MongoDB中对象的最大尺寸被限制为4MB,但对象的数量不受限制,MongoDB可以通过集群加快操作的执行速度,当数据库变得越来越大时,可以向集群增加服务器解决性能问题。
Mongo是一个高性能,开源,无模式的文档型数据库,它在许多场景下可用于替代传统的关系型数据库或键/值存储方式。Mongo使用C++开发,提供了以下功能:
◆面向集合的存储:适合存储对象及JSON形式的数据。
◆动态查询:Mongo支持丰富的查询表达式。查询指令使用JSON形式的标记,可轻易查询文档中内嵌的对象及数组。
◆完整的索引支持:包括文档内嵌对象及数组。Mongo的查询优化器会分析查询表达式,并生成一个高效的查询计划。
◆查询监视:Mongo包含一个监视工具用于分析数据库操作的性能。
◆复制及自动故障转移:Mongo数据库支持服务器之间的数据复制,支持主-从模式及服务器之间的相互复制。复制的主要目标是提供冗余及自动故障转移。
◆高效的传统存储方式:支持二进制数据及大型对象(如照片或图片)。
◆自动分片以支持云级别的伸缩性(处于早期alpha阶段):自动分片功能支持水平的数据库集群,可动态添加额外的机器。
MongoDB的主要目标是在键/值存储方式(提供了高性能和高度伸缩性)以及传统的RDBMS系统(丰富的功能)架起一座桥梁,集两者的优势于一身。根据官方网站的描述,Mongo适合用于以下场景:
◆网站数据:Mongo非常适合实时的插入,更新与查询,并具备网站实时数据存储所需的复制及高度伸缩性。
◆缓存:由于性能很高,Mongo也适合作为信息基础设施的缓存层。在系统重启之后,由Mongo搭建的持久化缓存层可以避免下层的数据源过载。
◆大尺寸,低价值的数据:使用传统的关系型数据库存储一些数据时可能会比较昂贵,在此之前,很多时候程序员往往会选择传统的文件进行存储。
◆高伸缩性的场景:Mongo非常适合由数十或数百台服务器组成的数据库。Mongo的路线图中已经包含对MapReduce引擎的内置支持。
◆用于对象及JSON数据的存储:Mongo的BSON数据格式非常适合文档化格式的存储及查询。
自然,MongoDB的使用也会有一些限制,例如它不适合:
◆高度事务性的系统:例如银行或会计系统。传统的关系型数据库目前还是更适用于需要大量原子性复杂事务的应用程序。
◆传统的商业智能应用:针对特定问题的BI数据库会对产生高度优化的查询方式。对于此类应用,数据仓库可能是更合适的选择。
◆需要SQL的问题
MongoDB支持OS X、Linux及Windows等操作系统,并提供了Python,PHP,Ruby,Java及C++语言的驱动程序,社区中也提供了对Erlang及.NET等平台的驱动程序。
为什么MongoDB适合大数据的存储?的更多相关文章
- MySQL数据库如何解决大数据量存储问题
利用MySQL数据库如何解决大数据量存储问题? 各位高手您们好,我最近接手公司里一个比较棘手的问题,关于如何利用MySQL存储大数据量的问题,主要是数据库中的两张历史数据表,一张模拟量历史数据和一张开 ...
- Hadoop是一种开源的适合大数据的分布式存储和处理的平台
"Hadoop能做什么?" ,概括如下: 1)搜索引擎:这也正是Doug Cutting设计Hadoop的初衷,为了针对大规模的网页快速建立索引: 2)大数据存储:利用Hadoop ...
- php特级课---2、网站大数据如何存储
php特级课---2.网站大数据如何存储 一.总结 一句话总结: mysql主从,分库分表,mysql分区,mysql集群,Nosql 1.mysql主从服务器各自的功能是什么? 增删改,主服务器 查 ...
- 【Python开发】Python 适合大数据量的处理吗?
Python 适合大数据量的处理吗? python 能处理数据库中百万行级的数据吗? 处理大规模数据时有那些常用的python库,他们有什么优缺点?适用范围如何? 需要澄清两点之后才可以比较全面的看这 ...
- 利用MySQL数据库如何解决大数据量存储问题?
提问:如何设计或优化千万级别的大表?此外无其他信息,个人觉得这个话题有点范,就只好简单说下该如何做,对于一个存储设计,必须考虑业务特点,收集的信息如下:1.数据的容量:1-3年内会大概多少条数据,每条 ...
- MySQL数据库解决大数据量存储问题
转载自:https://www.cnblogs.com/ryanzheng/p/8334915.html 提问:如何设计或优化千万级别的大表?此外无其他信息,个人觉得这个话题有点范,就只好简单说下该如 ...
- 【数据处理】SQL Server高效大数据量存储方案SqlBulkCopy
要求将Excel数据,大批量的导入到数据库中,尽量少的访问数据库,高性能的对数据库进行存储. 一个比较好的解决方案,就是采用SqlBulkCopy来处理存储数据. SqlBulkCopy存储大批量的数 ...
- 大数据的存储——HBase、HIVE、MYSQL数据库学习笔记
HBase 1.hbase为查询而生,它通过组织机器的内存,提供一个超大的内存hash表,它需要组织自己的数据结构,表在hbase中是物理表,而不是逻辑表,搜索引擎用它来存储索引,以满足实时查询的需求 ...
- 大数据项目实践:基于hadoop+spark+mongodb+mysql+c#开发医院临床知识库系统
一.前言 从20世纪90年代数字化医院概念提出到至今的20多年时间,数字化医院(Digital Hospital)在国内各大医院飞速的普及推广发展,并取得骄人成绩.不但有数字化医院管理信息系统(HIS ...
随机推荐
- UVA 1642 MagicalGCD 题解
题面 本题是一道区间最大公约数的模板题: 如果N^2暴力的话当然会超时,所以我们要发掘出区间gcd的特点: 设gcd[i]表示区间[1,i]的最大公约数: 我们可以发现,从一个点i到1之间的所有区间的 ...
- 洛谷 U78696 图书馆馆长的考验 题解
题面 1. 图书馆馆长的考验(library) 红魔馆的拥有者蕾米莉亚的好友帕秋莉是红魔馆的大图书馆的馆长.擅长操纵五行,名言是“万物都有属性.所谓的属性,和弱点是一样的”. 一天,因为魔理沙看了神之 ...
- <<C++ Primer>> 术语表 (总) (待补充)
术语表 目录 第 1 章 开始 第 I 部分 C++基础 第 2 章 变量和基本类型 第 3 章 字符串, 向量和数组 第 4 章 表达式 第 5 章 语句 第 6 章 函数 第 7 章 类 第 II ...
- jquery html select 清空保留第一项
<select id="a"> <option>1</option> <option>2</option> <op ...
- VeryNginx故障排除
在安装和使用 VeryNginx 的过程中可能会遇到一些问题,下面列举了常见的问题及对应的解决方案,供参考. Q: run "python instal.py install all&quo ...
- Swoole开启守护进程后如何关闭
查找相应端口号对应的PID(以我的为例,我的是9501端口) netstat -apn | 清除这个进程 启动客户端这时就会报错连不上了,证明服务已关
- git常用命令之log
查看提交日志记录 基础命令: git log commit ca82a6dff817ec66f44342007202690a93763949 Author: Scott Chacon < ...
- 一、bif
缩进是python的灵魂,缩进可以使python的代码整洁,有层次. python是脚本语言,就是为了简单方便以辅助科学运算,因此python有许多bif,build in function 全部都是 ...
- Centos7安装升级Ruby和集群搭建参考
安装升级Ruby参考:https://blog.csdn.net/qq_26440803/article/details/82717244 集群搭建参考:https://www.cnblogs.com ...
- 索尼展示基于MicroLED技术的16K显示屏:约780吋
尽管 8K 彩电刚刚在消费级市场崭露头角,更极致的 16K 却已不慌不忙地登场了. 在日前于拉斯维加斯举办的 NAB 2019 展会上,索尼就秀出了旗下的 16K 显示设备,它目前正在日本横滨的资生堂 ...