题目:https://codeforces.com/problemset/problem/1051/D

题意:一个2行n列的矩形,上面有黑白块,然后问你怎么布置才能有k个连通块,问有多少种方案数

思路:其实就是一个矩阵,我们一次放一列

四种状态

黑    |   白 | 白 | 黑

白  |  黑 | 白 | 黑

我们dp[n][m][k],第n列第m种状态k个连通块的方案数,现在我们算放每个状态时,计算一次增加了多少个连通块

因为数组太大了,所以我们用滚动数组

然后递推就行了

#include<bits/stdc++.h>
#define maxn 2005
#define mod 998244353
using namespace std;
typedef long long ll;
ll dp[][][maxn];
ll n,k;
int main(){
cin>>n>>k;
dp[][][]=;// 0 1
dp[][][]=;// 1 0
dp[][][]=;// 1 1
dp[][][]=;// 0 0
for(int i=;i<=n;i++){
for(int j=;j<=k;j++){
dp[][][j]=dp[][][j];
dp[][][j]=dp[][][j];
dp[][][j]=((dp[][][j]+dp[][][j])%mod+dp[][][j])%mod;
dp[][][j]=((dp[][][j]+dp[][][j])%mod+dp[][][j])%mod;
if(j->=){
dp[][][j]=(dp[][][j]+dp[][][j-])%mod;
dp[][][j]=(dp[][][j]+dp[][][j-])%mod;
}
if(j->=){
dp[][][j]=(dp[][][j]+dp[][][j-])%mod;
dp[][][j]=(dp[][][j]+dp[][][j-])%mod;
dp[][][j]=((dp[][][j]+dp[][][j-])%mod+dp[][][j-])%mod;
dp[][][j]=((dp[][][j]+dp[][][j-])%mod+dp[][][j-])%mod;
}
}
for(int j=;j<=k;j++){
for(int z=;z<=;z++){
dp[][z][j]=dp[][z][j];
dp[][z][j]=;
}
}
}
ll sum=((dp[][][k]+dp[][][k])%mod+(dp[][][k]+dp[][][k])%mod)%mod;
printf("%lld",sum);
}

CodeForces - 1051D (线性DP)的更多相关文章

  1. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

  2. CodeForces - 1051D Bicolorings(DP)

    题目链接:http://codeforces.com/problemset/problem/1051/D 看了大佬的题解后觉着是简单的dp,咋自己做就做不来呢. 大佬的题解:https://www.c ...

  3. CodeForces - 1038D (线性DP)

    题目:https://codeforces.com/problemset/problem/1038/D 题意:给你n个数字,每个数字可以吃左右两边的数,然后吃完后自己变成 a[i]-a[i+1]或者a ...

  4. [CodeForces - 1272D] Remove One Element 【线性dp】

    [CodeForces - 1272D] Remove One Element [线性dp] 标签:题解 codeforces题解 dp 线性dp 题目描述 Time limit 2000 ms Me ...

  5. [线性DP][codeforces-1110D.Jongmah]一道花里胡哨的DP题

    题目来源: Codeforces - 1110D 题意:你有n张牌(1,2,3,...,m)你要尽可能多的打出[x,x+1,x+2] 或者[x,x,x]的牌型,问最多能打出多少种牌 思路: 1.三组[ ...

  6. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  7. hdu1712 线性dp

    //Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...

  8. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

  9. POJ 2479-Maximum sum(线性dp)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33918   Accepted: 10504 Des ...

随机推荐

  1. 002-序列化装换JSON&XML概述

    一.概述 https://github.com/bjlhx15/java-serializer java-serializer 序列化项目 serialize-json-lib:json-lib框架 ...

  2. 用notepad++ 打造轻量级Java编译器

    http://blog.163.com/jackie_howe/blog/static/19949134720125591752396/ 用notepad++ 打造轻量级Java编译器 2012-06 ...

  3. idea中配置Resin运行环境

    文章目录 背景 下载resin 配置idea 背景 为了能够读Resin的源码,只看源码看不到值,故想在idea中通过断点查看. 下载resin https://caucho.com/products ...

  4. 继承Process类,另一种方法计算累加和以及阶乘

    #定义一个类 继承Process类 from multiprocessing import Process import os import time class jiecheng(Process): ...

  5. python阳历转农历

    # 引入日历库模块 import sxtwl # 日历中文索引 ymc = ["十一", "腊", "正", "二", ...

  6. [POJ3612] Telephone Wire(暴力dp+剪枝)

    [POJ3612] Telephone Wire(暴力dp+剪枝) 题面 有N根电线杆,初始高度为h[i],要给相邻的两根连线.可以选择拔高其中一部分电线杆,把一根电线杆拔高\(\Delta H\)的 ...

  7. Anaconda Jupyter WinError2:The system cannot find the file specified

    Traceback (most recent call last): File "C:\Users\builder\Miniconda3\Scripts\conda-build-script ...

  8. Day7-----Python的序列类(有子类:元组类,列表类)

    序列类型 1.基本介绍: 序列类型是一种基类类型  ,既然被称为那就肯定是有道理的,关于序列 它有  正向  和  反向  两种序号,正向序号从零开始,反向序号从负一开始 a = '例如这个字符串' ...

  9. git stash--在不想commit的情况下进行git pull

    公司的git开发模式是“主干发布,分支开发”,大多数情况下是多个开发在同一dev分支上进行开发,因此需要经常pull代码,如果本地工作区存在代码修改,那么pull肯定失败,提示需要先commit已修改 ...

  10. 一、Angular环境的搭建

    1.安装nodejs (1) 下载网址https://nodejs.org/en/download/ (2) 双击进行安装 (3) 打开命令行,输入node -v 和 npm -v 查看是否安装成功 ...