[Luogu 5465] [LOJ 6435] [PKUSC2018]星际穿越(倍增)
[Luogu 5465] [LOJ 6435] [PKUSC2018]星际穿越(倍增)
题面
n个点的图,点i和[l[i],i)的所有点连双向边。每次询问(l,r,x)表示x到[l,r]的所有点的最短路径长度和/(r-l+1)。
\(n \leq 10^5,l_i<r_i<x_i\)
分析
有(du)趣(liu)的倍增问题。
观察到\(l_i<r_i<x_i\),也就是说我们要求往左走的最小距离。首先差分一下,设\(sum(x,i)\)表示\(x\)到\([i,x-1]\)的最短距离和。那么答案就是\(\frac{sum(x,l)-sum(x,r+1)}{r-l+1}\)
然后我们不要直接考虑到x的最短路,而是反过来考虑走k步可以到达哪些节点。
我们从x开始走1步,可以走到哪里呢?。可以跳到的编号最小的点为\(l_x\),而最大的点应该是\(rb(x)=\max(k) (l_k \leq x)\),因为只要\(l_k \leq x\), \(x\)与\(k\)之间就有一条边。因此第1步能到达的区间是\([l_x,rb(x)]\)
第2步呢?。根据上面的分析,应该是\(\min(l_i)(i \in [l_x,rb(x)])\).但是实际上可以简化为\(\min(l_i)(i \in [l_x,n])\).因为在\([rb(x),n]\)内的点,它们的\(l\)比x还大,自然也比\([l_x,rb(x)]\)内的点的\(l\)还大,对最小值没有任何影响。
因此,设走\(k(k>1)\)步可以到达的编号最小的点为\(a\),那么走\(k+1\)步能够到达的编号最小的点为\(\min(l_i)(i\in [a,n])\).这样就可以倍增优化。
设\(f[i][j]\)表示\([i,n]\)内节点走\(2^j\)步能够到达的编号最小的点。那么显然有:
\]
\]
为了求答案,我们再维护一个和,\(g[i][j]\)表示\(i\)到\([f[i][j],i-1]\)内所有点的距离和。那么:
\(g[i][0]=i-f[i][0]\) (到\([f[i][0],i-1]\)中的每个点的距离都为1)
\]
这是因为:到\([f[i][j-1],i-1]\)内的节点,距离和是\(g[i][j-1]\)。而到\([f[i][j],f[i][j-1]]\)内的节点的距离由两部分组成,一部分是各节点到\(f[i][j-1]\)的距离\(g[f[i][j-1]][j-1]\),另一部分是从\(f[i][j-1]\)到\(i\)的距离\(2^{j-1}\).因为一共有\((f[i][j-1]-f[i][j])\)个节点,所以要乘上\((f[i][j-1]-f[i][j])\)
查询的话就倍增的跳即可,注意一些细节,还是直接上代码吧.
int calc(int x,int l){ //sum(x,l),[l,x-1]内答案
if(a[x]<=l) return x-l;//只需走一次的情况,特判
//第一次走的答案
int ans=x-a[x];//距离和
int cnt=1;//走的次数
x=a[x];
for(int i=log2n;i>=0;i--){
if(f[x][i]>=l){
ans+=g[x][i]+cnt*(x-f[x][i]);//,g[x][i]为当前这段的距离和,但是之前每个节点还跳了cnt步到x,因此要加上cnt*[f[x][i],x-1]
cnt+=(1<<i);
x=f[x][i];
}
}
if(x>l) ans+=x-l+cnt*(x-l);//如果最后一步没跳满,加上f[x][i]
return ans;
}
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define maxn 300000
#define maxlogn 25
using namespace std;
int gcd(int a,int b){
return b==0?a:gcd(b,a%b);
}
int n,q;
int log2n;
int a[maxn+5];
int f[maxn+5][maxlogn+5];
int g[maxn+5][maxlogn+5];
int calc(int x,int l){ //[l,x-1]内答案
if(a[x]<=l) return x-l;
//特判第一次跳
int ans=x-a[x];
int cnt=1;
x=a[x];
for(int i=log2n;i>=0;i--){
if(f[x][i]>=l){
ans+=g[x][i]+cnt*(x-f[x][i]);//[f[x][i],x-1]跳到x还需cnt步
cnt+=(1<<i);
x=f[x][i];
}
}
if(x>l) ans+=x-l+cnt*(x-l);//如果最后一步没跳满,加上f[x][i]
return ans;
}
int main(){
int l,r,x;
scanf("%d",&n);
log2n=log2(n)+1;
a[1]=1;
for(int i=2;i<=n;i++) scanf("%d",&a[i]);
f[n][0]=a[n];
for(int i=n-1;i>=1;i--){
f[i][0]=min(f[i+1][0],a[i]);
g[i][0]=i-f[i][0];
}
for(int j=1;j<=log2n;j++){
for(int i=1;i<=n;i++){
if(f[i][j-1]){
f[i][j]=f[f[i][j-1]][j-1];
g[i][j]=g[i][j-1]+g[f[i][j-1]][j-1]+((f[i][j-1]-f[i][j])<<(j-1));
//[f[i][j],f[i][j-1]-1]内的点跳到j还需2^{j-1}步
}
}
}
scanf("%d",&q);
while(q--){
scanf("%d %d %d",&l,&r,&x);
int up=calc(x,l)-calc(x,r+1);
int down=r-l+1;
int g=gcd(up,down);
up/=g;
down/=g;
printf("%d/%d\n",up,down);
}
}
[Luogu 5465] [LOJ 6435] [PKUSC2018]星际穿越(倍增)的更多相关文章
- LOJ.6435.[PKUSC2018]星际穿越(倍增)
LOJ BZOJ 参考这儿qwq. 首先询问都是求,向左走的最短路. \(f[i][j]\)表示从\(i\)走到\(j\)最少需要多少步.表示这样只会\(O(n^2\log n)\)的= =但是感觉能 ...
- [PKUSC2018]星际穿越(倍增)
题意:n个点的图,点i和[l[i],i)的所有点连双向边.每次询问(l,r,x)表示x到[l,r]的所有点的最短路径长度和. 首先这题显然可以线段树优化建图,但是需要比较好的常数才能通过45分,还需要 ...
- [PKUSC2018]星际穿越
[PKUSC2018]星际穿越 题目大意: 有一排编号为\(1\sim n\)的\(n(n\le3\times10^5)\)个点,第\(i(i\ge 2)\)个点与\([l_i,i-1]\)之间所有点 ...
- [BZOJ4444] [Luogu 4155] [LOJ 2007] [SCOI2015]国旗计划(倍增)
[BZOJ4444] [Luogu 4155] [LOJ 2007] [SCOI2015]国旗计划(倍增) 题面 题面较长,略 分析 首先套路的断环为链.对于从l到r的环上区间,若l<=r,我们 ...
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
- BZOJ5371[Pkusc2018]星际穿越——可持久化线段树+DP
题目描述 有n个星球,它们的编号是1到n,它们坐落在同一个星系内,这个星系可以抽象为一条数轴,每个星球都是数轴上的一个点, 特别地,编号为i的星球的坐标是i. 一开始,由于科技上的原因,这n个星球的居 ...
- 【洛谷5465】[PKUSC2018] 星际穿越(倍增)
点此看题面 大致题意: 给定\(l_{2\sim n}\),其中\(l_i\)表示\([l_i,i-1]\)的所有点与\(i\)之间存在一条长度为\(1\)的双向路径.每次询问给出\(l,r,x\), ...
- LOJ6435 PKUSC2018 星际穿越
这个题吧当时在考场只得了45分 然后70分的性质都分析到了 不知道为啥就是写萎蛋了 哎 当时还是too young too simple 看了一下julao们的博客这个题有两种做法 一个是比较费脑子的 ...
- 2019.03.09 bzoj5371: [Pkusc2018]星际穿越(主席树)
传送门 题意简述: 给一个序列,对于第iii个位置,它跟[limi,i−1][lim_i,i-1][limi,i−1]这些位置都存在一条长度为111的无向边. 称dist(u,v)dist(u,v) ...
随机推荐
- linux服务器外网内网(双网络)搭建
一共有2台服务器,分别用a,b表示.a双网卡,即有外网也有内网.b只有内网环境.a,b的内网是通过交换机组建.至于外网怎么搭建我就不说了.关键说一说内网是怎么组建的. 如果你对linux不熟悉,对网卡 ...
- Node.js之querystring模块
querystring从字面上的意思就是查询字符串,一般是对http请求所带的数据进行解析.querystring模块只提供4个方法,在我看来,这4个方法是相对应的. 这4个方法分别是querystr ...
- vue 设置 input 为不可以编辑
我用最笨的方法,先实现功能先,用两个input,一个可以编辑,一个不可以编辑,失去焦点后隐藏可以点击的那个,点"编辑"时,显示可以编辑的那个input <div class= ...
- linux登陆客户端自动执行命令
登陆客户端的时候,检查一下磁盘空间,内存,或是谁在线,每次都要手动去敲命令. 小技巧: cd ~ vi .bashrc 添加: echo "####Check Disk Use####&qu ...
- linux操作目录命令之mkdir与rmdir
一.mkdir 创建目录(一个或多个目录) mkdir -m 777 -p path 1)-m 对新建目录设置权限 2)-p 可以是一个路径名称.此时若路径的某一级目录尚不存在,使有该选项后系统 ...
- 使用WireMock伪造REST服务
在真正的rest api服务还没有写好之前,为了方便前端测试调用,后端可以写个服务,伪造rest服务(写假数据) 1.官网: http://wiremock.org/ 下载可执行jar:http:// ...
- rabbitmq 和 kafka 简单的性能测试
测试环境:ubuntu 15.10 64位 cpu:inter core i7-4790 3.60GHZ * 8 内存:16GB 硬盘:ssd 120GB 软件环境:rabbmitmq 3.6.0 ...
- Java课堂动手动脑
1.使用Files. walkFileTree()找出指定文件夹下所有大于指定大小(比如1M)的文件: 代码: package test; import java.io.IOException; im ...
- C# walls
在学习C#的阶段中,我们一点一点的往前爬, 此代码需要添加selenium ,和 获取 引用. using Ivony.Html.Parser; using Ivony.Html; using Ope ...
- DVWA--XSS(DOM)
0X01爱之先了解 DOM,全称Document Object Model,是一个平台和语言都中立的接口,可以使程序和脚本能够动态访问和更新文档的内容.结构以及样式. DOM型XSS其实是一种特殊类型 ...