好像是最大权闭合图,也就是最大流最小割啦,找出最大流的路径输出,这题如何建模呢,一样的先设源点和汇点,源点向每个计划连capacity为赞助数的边,每个计划连相应装置capacity为无穷的边,每个装置向汇点连capacity为支付费用的边,这样,最大利润就是赞助总数-最大流啦,如何证?看两个例子

若是可行方案,相减即为利润,若是不可行方案,相减就为0,数学归纳法可推知n个时也对

另一个问题,如何找到最大权闭合图呢,最后一次分层的level数组就可以帮忙了,我们知道退出dinic算法就是无法到达汇点,考虑如何分层,满足两个条件,capacity大于flow且尚未分层,我们知道,对答案有贡献的是到计划的那条边的capacity比其相应的装置的capacity加起来还要大,最后一次分层时,即已经达到最大流,若从源点到某个计划无法分层,说明其capacity<=对应装置的,那就一定不选,能分层的一定是源有余而汇不进,又计划和装置之间的流量是无穷,则一定可以分层,直接考虑最后一层的level数组并输出即可,附上别个大佬的解释(

#include<bits/stdc++.h>
using namespace std;
#define lowbit(x) ((x)&(-x))
typedef long long LL; const int maxm = 1e4+;
const int INF = 0x3f3f3f3f; struct edge{
int u, v, cap, flow, nex;
} edges[maxm]; int head[maxm], cur[maxm<<], cnt, level[], give[], cost[];
vector<int> req[]; void init() {
memset(head, -, sizeof(head));
} void add(int u, int v, int cap) {
edges[cnt] = edge{u, v, cap, , head[u]};
head[u] = cnt++;
} void addedge(int u, int v, int cap) {
add(u, v, cap), add(v, u, );
} void bfs(int s) {
memset(level, -, sizeof(level));
queue<int> q;
level[s] = ;
q.push(s);
while(!q.empty()) {
int u = q.front();
q.pop();
for(int i = head[u]; i != -; i = edges[i].nex) {
edge& now = edges[i];
if(now.cap > now.flow && level[now.v] < ) {
level[now.v] = level[u] + ;
q.push(now.v);
}
}
}
} int dfs(int u, int t, int f) {
if(u == t) return f;
for(int& i = cur[u]; i != -; i = edges[i].nex) {
edge& now = edges[i];
if(now.cap > now.flow && level[u] < level[now.v]) {
int d = dfs(now.v, t, min(f, now.cap - now.flow));
if(d > ) {
now.flow += d;
edges[i^].flow -= d;
return d;
} }
}
return ;
} int dinic(int s, int t) {
int maxflow = ;
for(;;) {
bfs(s);
if(level[t] < ) break;
memcpy(cur, head, sizeof(head));
int f;
while((f = dfs(s, t, INF)) > )
maxflow += f;
}
return maxflow;
} void run_case() {
init();
int n, m;
scanf("%d%d", &m, &n);
char in[];
int s = , t = m++n, sum = ;
for(int i = ; i <= m; ++i) {
scanf("%d", &give[i]);
sum += give[i];
memset(in, , sizeof(in));
cin.getline(in, );
int ulen = , num;
while(sscanf(in+ulen, "%d", &num) == ) {
req[i].push_back(num);
if(num == ) ulen++;
else while(num) {
num /= ; ulen++;
}
ulen++;
}
}
for(int i = ; i <= n; ++i)
scanf("%d", &cost[i]);
for(int i = ; i <= m; ++i) {
addedge(s, i, give[i]);
for(int j = ; j < req[i].size(); ++j)
addedge(i, m+req[i][j], INF);
}
for(int i = ; i <= n; ++i)
addedge(i+m, t, cost[i]);
int ans = sum - dinic(s, t);
for(int i = ; i <= m; ++i) {
if(level[i] != -) printf("%d ", i);
}
printf("\n");
for(int i = ; i <= n; ++i)
if(level[i+m] != -) printf("%d ", i);
printf("\n%d", ans);
} int main() {
ios::sync_with_stdio(false), cin.tie();
run_case();
//cout.flush();
return ;
}

luogu P2762 太空飞行计划问题的更多相关文章

  1. 【luogu P2762 太空飞行计划问题】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2762 算是拍照那个题的加强下. 输入真的很毒瘤.(都这么说但好像我的过了?) #include <qu ...

  2. 洛谷 P2762 太空飞行计划问题 P3410 拍照【最大权闭合子图】题解+代码

    洛谷 P2762 太空飞行计划问题 P3410 拍照[最大权闭合子图]题解+代码 最大权闭合子图 定义: 如果对于一个点集合,其中任何一个点都不能到达此集合以外的点,这就叫做闭合子图.每个点都有一个权 ...

  3. Luogu 2762 太空飞行计划 / Libre 6001 「网络流 24 题」太空飞行计划 (网络流,最大流)

    Luogu 2762 太空飞行计划 / Libre 6001 「网络流 24 题」太空飞行计划 (网络流,最大流) Description W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行 ...

  4. 网络流24题:P2762 太空飞行计划问题

    P2762 太空飞行计划问题 题目背景 题目描述 W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,…,E ...

  5. P2762 太空飞行计划问题(网络流24题之一)

    题目描述 W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,…,Em},和进行这些实验需要使用的全部仪器的 ...

  6. P2762 太空飞行计划问题 网络流

    题目描述 W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,…,Em},和进行这些实验需要使用的全部仪器的 ...

  7. 【Luogu】P2762太空飞行计划(最大权闭合图)

    题目链接 woc这题目的输入格式和输出格式真的恶心 首先我们就着样例讲一下闭合图 如图所示,第一层是两个实验节点,带来正收益:第二层是三个仪器节点,带来负收益:问讲道理到终点可以获得多大收益. 闭合图 ...

  8. 洛谷 P4174 [NOI2006]最大获利 && 洛谷 P2762 太空飞行计划问题 (最大权闭合子图 && 最小割输出任意一组方案)

    https://www.luogu.org/problemnew/show/P4174 最大权闭合子图的模板 每个通讯站建一个点,点权为-Pi:每个用户建一个点,点权为Ci,分别向Ai和Bi对应的点连 ...

  9. 洛谷 - P2762 - 太空飞行计划问题 - 最小割

    https://www.luogu.org/problemnew/solution/P2762 最小割对应的点,在最后一次更新中dinic的bfs会把他的dep重置掉.所以可以根据这个性质复原最小割. ...

随机推荐

  1. Python os模块、os.path模块常用方法

    os模块:os模块在python中包含普遍的操作系统功能,下面列出了一些在os模块中比较有用的部分. os.sep 可以取代操作系统特定的路径分隔符.windows下为 "\" o ...

  2. tkinter学习(1)

    1.hit_me的一个简单tk窗口学习1.1 代码: import tkinter as tk win = tk.Tk() win.title('my first window') #定义标题,如果未 ...

  3. 翻页插件 jquery

    //css <style> * { padding:; margin:; list-style: none; } .wrapper { width: 100%; cursor: point ...

  4. Nexus-vPC基础实验

    一.实验拓扑: 由于条件有限,使用两个N5K做基本的vPC实验,Peer Keepalive Link使用的是两个Nexus 5K的Mgm0接口. 二.配置步骤:1.先构建vPC domain,并在d ...

  5. vue中加载three.js的gltf模型

    vue中加载three.js的gltf模型 一.开始引入three.js相关插件.首先利用淘宝镜像,操作命令为: cnpm install three //npm install three也行 二. ...

  6. TortoiseGit 安装与配置

    2. TortoiseGit安装与配置 标签: TortoiseGit安装配置Windows 2014-12-01 15:25 135739人阅读 评论(10) 收藏 举报 .embody{ padd ...

  7. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  8. Sonic_cli常用命令

    用户名:admin 密码:YourPaSsWoRd //change password1>admin@sonic:~$ passwdChanging password for admin.(cu ...

  9. Python基础-1 基础语法

    基础语法 标识符 所谓的标识符就是对变量.常量.函数.类等对象起的名字. 首先必须说明的是,Python语言在任何场景都严格区分大小写!也就是说A和a代表的意义完全不同 python对于表示标识符的命 ...

  10. NLP的比赛和数据集

    整理了NLP领域的比赛.数据集.模型 比赛 网站 主办方(作者) decaNLP http://decanlp.com/ Salesforce CLUE https://github.com/CLUE ...