一.简介

前两节分别实现了硬间隔支持向量机与软间隔支持向量机,它们本质上都是线性分类器,只是软间隔对“异常点”更加宽容,它们对形如如下的螺旋数据都没法进行良好分类,因为没法找到一个直线(超平面)能将其分隔开,必须使用曲线(超曲面)才能将其分隔,而核技巧便是处理这类问题的一种常用手段。

import numpy as np
import matplotlib.pyplot as plt
import copy
import random
import os
os.chdir('../')
from ml_models import utils
from ml_models.svm import *
from sklearn import datasets
%matplotlib inline
data, target = datasets.make_moons(noise=0.01)
plt.scatter(data[:,0],data[:,1],c=target)
plt.show()

二.核技巧

核技巧简单来说分为两步:

(1)将低维非线性可分数据\(x\),通过一个非线性映射函数\(\phi\),映射到一个新空间(高维度甚至是无限维空间);

(2)对新空间的数据\(\phi(x)\)训练线性分类器

比如如下的情况:

原始数据需要使用一个椭圆才能分隔开,但对原始数据施加一个非线性变换\(\phi:(x_1,x_2)->(x_1^2,x_2^2)\)变换后,在新空间中就可以线性分隔了

利用核技巧后的SVM

所以,如果对原始数据施加一个映射,此时软间隔SVM的对偶问题为:

\[\min_{\alpha} \frac{1}{2}\sum_{i=1}^N\sum_{j=1}^N\alpha_i\alpha_jy_iy_j\phi(x_i)^T\phi(x_j)-\sum_{i=1}^N\alpha_i\\
s.t.\sum_{i=1}^N\alpha_iy_i=0,\\
0\leq\alpha_i\leq C,i=1,2,...,N
\]

求解得最优\(\alpha_i^*\)后,SVM模型为:

\[f(x)=sign(\sum_{i=1}^N\alpha_iy_i\phi(x_i)^T\phi(x)+b^*)
\]

三.核函数

观察一下上面公式,我们的目的其实是求解\(\phi(x_i)^T\phi(x_j)\),有没有一种函数让\((x_i,x_j)\)只在原始空间做计算就达到\(\phi(x_i)^T\phi(x_j)\)的效果呢?有的,那就是核函数,即:

\[K(x_i,x_j)=\phi(x_i)^T\phi(x_j)
\]

怎样的函数才能做核函数?

要成为核函数必须满足如下两点条件:

(1)对称性:\(K(x_i,x_j)=K(x_j,x_i)\)

(2)正定性:对任意的\(x_i,i=1,2,..,m\),\(K(x,z)\)对应的Gramm矩阵:

\[K=[K(x_i,x_j)]_{m\times m}
\]

是半正定矩阵,这里的\(x_i\in\)可行域,并不要求一定要属于样本集

常见的核函数有哪些?

目前用的比较多的核函数有如下一些:

(1)多项式核函数:

\[K(x,z)=(x^Tz+1)^p
\]

(2)高斯核函数:

\[K(x,z)=exp(-\frac{\mid\mid x-z\mid\mid^2}{2\sigma^2})
\]

显然,线性可分SVM中使用的是\(K(x,z)=x^Tz\)也是核函数

利用核函数后的SVM

利用核函数后,软间隔SVM的对偶问题为:

\[\min_{\alpha} \frac{1}{2}\sum_{i=1}^N\sum_{j=1}^N\alpha_i\alpha_jy_iy_jK(x_i,x_j)-\sum_{i=1}^N\alpha_i\\
s.t.\sum_{i=1}^N\alpha_iy_i=0,\\
0\leq\alpha_i\leq C,i=1,2,...,N
\]

求解得最优\(\alpha_i^*\)后,SVM模型为:

\[f(x)=sign(\sum_{i=1}^N\alpha_iy_iK(x,x_i)+b^*)
\]

四.代码实现

代码实现很简单,就在软间隔SVM的基础上将向量的内积计算\(x^Tz\)替换为\(K(x,z)\)即可,首先定义一些核函数:

"""
该部分放到ml_model.kernel_functions中
""" def linear():
"""
线性核函数
:return:linear function
""" def _linear(x, y):
return np.dot(x, y) return _linear def poly(p=2):
"""
多项式核函数
:param p:
:return: poly function
""" def _poly(x, y):
return np.power(np.dot(x, y) + 1, p) return _poly def rbf(sigma=0.1):
"""
径向基/高斯核函数
:param sigma:
:return:
""" def _rbf(x, y):
np_x = np.asarray(x)
if np_x.ndim <= 1:
return np.exp((-1 * np.dot(x - y, x - y) / (2 * sigma * sigma)))
else:
return np.exp((-1 * np.multiply(x - y, x - y).sum(axis=1) / (2 * sigma * sigma))) return _rbf
from ml_models import kernel_functions

class SVC(object):
def __init__(self, epochs=100, C=1.0, tol=1e-3, kernel=None, degree=3, gamma=0.1):
"""
:param epochs: 迭代次数上限
:param C: C越小,对于误分类的惩罚越小
:param tol:提前中止训练时的误差值上限,避免迭代太久
:param kernel:核函数
:param degree:kernel='poly'时生效
:param gamma:kernel='rbf'时生效
"""
self.b = None
self.alpha = None
self.E = None
self.epochs = epochs
self.C = C
self.tol = tol
# 定义核函数
if kernel is None:
self.kernel_function = kernel_functions.linear()
elif kernel == 'poly':
self.kernel_function = kernel_functions.poly(degree)
elif kernel == 'rbf':
self.kernel_function = kernel_functions.rbf(gamma)
else:
self.kernel_function = kernel_functions.linear()
# 记录支持向量
self.support_vectors = None
# 记录支持向量的x
self.support_vector_x = []
# 记录支持向量的y
self.support_vector_y = []
# 记录支持向量的alpha
self.support_vector_alpha = [] def f(self, x):
"""
:param x:
:return: wx+b
"""
x_np = np.asarray(x)
if len(self.support_vector_x) == 0:
if x_np.ndim <= 1:
return 0
else:
return np.zeros((x_np.shape[:-1]))
else:
if x_np.ndim <= 1:
wx = 0
else:
wx = np.zeros((x_np.shape[:-1]))
for i in range(0, len(self.support_vector_x)):
wx += self.kernel_function(x, self.support_vector_x[i]) * self.support_vector_alpha[i] * \
self.support_vector_y[i]
return wx + self.b def init_params(self, X, y):
"""
:param X: (n_samples,n_features)
:param y: (n_samples,) y_i\in\{0,1\}
:return:
"""
n_samples, n_features = X.shape
self.b = .0
self.alpha = np.zeros(n_samples)
self.E = np.zeros(n_samples)
# 初始化E
for i in range(0, n_samples):
self.E[i] = self.f(X[i, :]) - y[i] def _select_j(self, best_i):
"""
选择j
:param best_i:
:return:
"""
valid_j_list = [i for i in range(0, len(self.alpha)) if self.alpha[i] > 0 and i != best_i]
best_j = -1
# 优先选择使得|E_i-E_j|最大的j
if len(valid_j_list) > 0:
max_e = 0
for j in valid_j_list:
current_e = np.abs(self.E[best_i] - self.E[j])
if current_e > max_e:
best_j = j
max_e = current_e
else:
# 随机选择
l = list(range(len(self.alpha)))
seq = l[: best_i] + l[best_i + 1:]
best_j = random.choice(seq)
return best_j def _meet_kkt(self, x_i, y_i, alpha_i):
"""
判断是否满足KKT条件 :param w:
:param b:
:param x_i:
:param y_i:
:return:
"""
if alpha_i < self.C:
return y_i * self.f(x_i) >= 1 - self.tol
else:
return y_i * self.f(x_i) <= 1 + self.tol def fit(self, X, y2, show_train_process=False):
""" :param X:
:param y2:
:param show_train_process: 显示训练过程
:return:
"""
y = copy.deepcopy(y2)
y[y == 0] = -1
# 初始化参数
self.init_params(X, y)
for _ in range(0, self.epochs):
if_all_match_kkt = True
for i in range(0, len(self.alpha)):
x_i = X[i, :]
y_i = y[i]
alpha_i_old = self.alpha[i]
E_i_old = self.E[i]
# 外层循环:选择违反KKT条件的点i
if not self._meet_kkt(x_i, y_i, alpha_i_old):
if_all_match_kkt = False
# 内层循环,选择使|Ei-Ej|最大的点j
best_j = self._select_j(i) alpha_j_old = self.alpha[best_j]
x_j = X[best_j, :]
y_j = y[best_j]
E_j_old = self.E[best_j] # 进行更新
# 1.首先获取无裁剪的最优alpha_2
eta = self.kernel_function(x_i, x_i) + self.kernel_function(x_j, x_j) - 2.0 * self.kernel_function(
x_i, x_j)
# 如果x_i和x_j很接近,则跳过
if eta < 1e-3:
continue
alpha_j_unc = alpha_j_old + y_j * (E_i_old - E_j_old) / eta
# 2.裁剪并得到new alpha_2
if y_i == y_j:
L = max(0., alpha_i_old + alpha_j_old - self.C)
H = min(self.C, alpha_i_old + alpha_j_old)
else:
L = max(0, alpha_j_old - alpha_i_old)
H = min(self.C, self.C + alpha_j_old - alpha_i_old) if alpha_j_unc < L:
alpha_j_new = L
elif alpha_j_unc > H:
alpha_j_new = H
else:
alpha_j_new = alpha_j_unc # 如果变化不够大则跳过
if np.abs(alpha_j_new - alpha_j_old) < 1e-5:
continue
# 3.得到alpha_1_new
alpha_i_new = alpha_i_old + y_i * y_j * (alpha_j_old - alpha_j_new)
# 5.更新alpha_1,alpha_2
self.alpha[i] = alpha_i_new
self.alpha[best_j] = alpha_j_new
# 6.更新b
b_i_new = y_i - self.f(x_i) + self.b
b_j_new = y_j - self.f(x_j) + self.b
if self.C > alpha_i_new > 0:
self.b = b_i_new
elif self.C > alpha_j_new > 0:
self.b = b_j_new
else:
self.b = (b_i_new + b_j_new) / 2.0
# 7.更新E
for k in range(0, len(self.E)):
self.E[k] = self.f(X[k, :]) - y[k] # 8.更新支持向量相关的信息
self.support_vectors = np.where(self.alpha > 1e-3)[0]
self.support_vector_x = [X[i, :] for i in self.support_vectors]
self.support_vector_y = [y[i] for i in self.support_vectors]
self.support_vector_alpha = [self.alpha[i] for i in self.support_vectors] # 显示训练过程
if show_train_process is True:
utils.plot_decision_function(X, y2, self, [i, best_j])
utils.plt.pause(0.1)
utils.plt.clf() # 如果所有的点都满足KKT条件,则中止
if if_all_match_kkt is True:
break # 显示最终结果
if show_train_process is True:
utils.plot_decision_function(X, y2, self, self.support_vectors)
utils.plt.show() def get_params(self):
"""
输出原始的系数
:return: w
""" return self.w, self.b def predict_proba(self, x):
"""
:param x:ndarray格式数据: m x n
:return: m x 1
"""
return utils.sigmoid(self.f(x)) def predict(self, x):
"""
:param x:ndarray格式数据: m x n
:return: m x 1
"""
proba = self.predict_proba(x)
return (proba >= 0.5).astype(int)

五.查看效果

#查看rbf的效果
svm = SVC(C=3.0, kernel='rbf',gamma=0.1, epochs=10, tol=0.2)
svm.fit(data, target)
utils.plot_decision_function(data, target, svm, svm.support_vectors)

#查看poly的效果
svm = SVC(C=3.0, kernel='poly',degree=3, epochs=10, tol=0.2)
svm.fit(data, target)
utils.plot_decision_function(data, target, svm, svm.support_vectors)

六.问题讨论

1.RBF函数中\(\sigma\)的不同取值对训练的影响

为了探索该问题,我们对\(\sigma\)从小到大取一组数,在另外一个伪数据上查看效果

from sklearn.datasets import make_classification
data, target = make_classification(n_samples=100, n_features=2, n_classes=2, n_informative=1, n_redundant=0,
n_repeated=0, n_clusters_per_class=1, class_sep=.5,random_state=21)
c1 = SVC(C=3.0, kernel='rbf',gamma=0.1, epochs=10, tol=0.01)
c1.fit(data, target)
c2 = SVC(C=3.0, kernel='rbf',gamma=0.5, epochs=10, tol=0.01)
c2.fit(data, target)
c3 = SVC(C=3.0, kernel='rbf',gamma=2, epochs=10, tol=0.01)
c3.fit(data, target)
plt.figure(figsize=(16,4))
plt.subplot(1,3,1)
utils.plot_decision_function(data,target,c1)
plt.subplot(1,3,2)
utils.plot_decision_function(data,target,c2)
plt.subplot(1,3,3)
utils.plot_decision_function(data,target,c3)

上面\(\sigma\)分别取值\([0.1,0.5,2]\),通过结果可以简单总结如下:

(1)如果\(\sigma\)取值越小,SVM越能抓住个别样本的信息,越容易过拟合;

(2)\(\sigma\)取值越大SVM的泛化能力越强

如何对该结果进行理解呢?可以通过样本点在映射空间的距离来看,对任意两个样本点\(x,z\),它们在映射空间中的距离的平方可以表示如下:

\[||\phi(x)-\phi(z)||^2=(\phi(x)-\phi(z))^T(\phi(x)-\phi(z))\\
=\phi(x)^T\phi(x)+\phi(z)^T\phi(z)-2\phi(x)^T\phi(z)\\
=K(x,x)+K(z,z)-2K(x,z)\\
=2-2\cdot exp(-\frac{\mid\mid x-z\mid\mid^2}{2\sigma^2})(将K(x,z)替换为RBF函数)
\]

所以:

(1)如果\(\sigma\rightarrow 0\),那么\(-\frac{\mid\mid x-z\mid\mid^2}{2\sigma^2}\rightarrow -\infty\),那么\(exp(-\frac{\mid\mid x-z\mid\mid^2}{2\sigma^2})\rightarrow 0\),那么\(||\phi(x)-\phi(z)||\rightarrow \sqrt 2\)

(2)如果\(\sigma\rightarrow \infty\),那么\(-\frac{\mid\mid x-z\mid\mid^2}{2\sigma^2}\rightarrow 0\),那么\(exp(-\frac{\mid\mid x-z\mid\mid^2}{2\sigma^2})\rightarrow 1\),那么\(||\phi(x)-\phi(z)||\rightarrow 0\)

我们可以验证上面的总结,若\(\sigma\)取值越小,样本点在映射空间越分散,则在高维空间越容易线性可分,表现在低维空间则越容易过拟合;\(\sigma\)取值越大,样本点在映射空间越集中,越不易线性可分,表现在低维空间也是不易线性可分

2.如何理解RBF可将数据映射到无限维空间

原谅自己,这部分公式不想码了,具体内容参考大神的知乎帖子>>>,其中主要需要用到两个等式变换:

(1)指数函数的泰勒级数:\(e^x=\sum_{n=1}^{\infty}\frac{x^n}{n!}\),将RBF函数进行展开;

(2)利用多项式展开定理,将样本\(x\)与\(z\)在原始空间的内积的\(n\)次方进行展开,假如\(x,z\in R^k\),那么:

\[(x^Tz)^n=(\sum_{i=1}^kx_iz_i)^n\\
=\sum_{l=1}^L\frac{n!}{n_{l_1}!n_{l_2}!\cdots n_{l_k}!}(x_1z_1)^{n_{l_1}}(x_2z_2)^{n_{l_2}}\cdots (x_kz_k)^{n_{l_k}}
\]

这里,\(\sum_{i=1}^kn_{l_i}=n\),\(L=\frac{(n+k-1)!}{n!(k-1)!}\),进一步的,上面等式可以化简为形如这样的表达式:\(\Phi(x)^T\Phi(z)\),\(\Phi(x)=[\Phi_1(x),\Phi_2(x),\cdots ,\Phi_L(x)]\)

《机器学习_07_03_svm_核函数与非线性支持向量机》的更多相关文章

  1. 简单物联网:外网访问内网路由器下树莓派Flask服务器

    最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...

  2. 利用ssh反向代理以及autossh实现从外网连接内网服务器

    前言 最近遇到这样一个问题,我在实验室架设了一台服务器,给师弟或者小伙伴练习Linux用,然后平时在实验室这边直接连接是没有问题的,都是内网嘛.但是回到宿舍问题出来了,使用校园网的童鞋还是能连接上,使 ...

  3. 外网访问内网Docker容器

    外网访问内网Docker容器 本地安装了Docker容器,只能在局域网内访问,怎样从外网也能访问本地Docker容器? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Docker容器 ...

  4. 外网访问内网SpringBoot

    外网访问内网SpringBoot 本地安装了SpringBoot,只能在局域网内访问,怎样从外网也能访问本地SpringBoot? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装Java 1 ...

  5. 外网访问内网Elasticsearch WEB

    外网访问内网Elasticsearch WEB 本地安装了Elasticsearch,只能在局域网内访问其WEB,怎样从外网也能访问本地Elasticsearch? 本文将介绍具体的实现步骤. 1. ...

  6. 怎样从外网访问内网Rails

    外网访问内网Rails 本地安装了Rails,只能在局域网内访问,怎样从外网也能访问本地Rails? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Rails 默认安装的Rails端口 ...

  7. 怎样从外网访问内网Memcached数据库

    外网访问内网Memcached数据库 本地安装了Memcached数据库,只能在局域网内访问,怎样从外网也能访问本地Memcached数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装 ...

  8. 怎样从外网访问内网CouchDB数据库

    外网访问内网CouchDB数据库 本地安装了CouchDB数据库,只能在局域网内访问,怎样从外网也能访问本地CouchDB数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Cou ...

  9. 怎样从外网访问内网DB2数据库

    外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...

  10. 怎样从外网访问内网OpenLDAP数据库

    外网访问内网OpenLDAP数据库 本地安装了OpenLDAP数据库,只能在局域网内访问,怎样从外网也能访问本地OpenLDAP数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...

随机推荐

  1. 基于 Docker 构建企业 Jenkins CI平台

    持续集成(Continuous Integration,CI):代码合并.构建.部署.测试都在一起,不断地执行这个过程,并对结果反馈. 持续部署(Continuous Deployment,CD):部 ...

  2. C++-doctest-测试框架

    C++-doctest-测试框架 C++UnitTestDoctest 测试框架 doctest 是用过的最简单好用的的单元测试框架, 只需要引用 一个头文件即可 无main 函数的测试样例 #def ...

  3. HTML后台管理页面布局

    设计网页,让网页好看:网上找模板 搜 HTML模板 BootStrap 一.内容回顾: HTML 一大堆的标签:块级.行内 CSS position background text-align mar ...

  4. ES6特性之:参数默认值

    作为一个开发者,跟进行业步伐是非常需要的,不能躺在现有的知识和经验温床上做美梦.JavaScript的ES2015标准(即我们说的ES6)在2016年已经被广泛应用了,还没开始使用的朋友,赶紧来磨一下 ...

  5. codeforce 1311E. Construct the Binary Tree (构造,就是个模拟)

    ACM思维题训练集合 You are given two integers n and d. You need to construct a rooted binary tree consisting ...

  6. CodeForces - 262B

    Roma works in a company that sells TVs. Now he has to prepare a report for the last year. Roma has g ...

  7. python selenium(定位方法)

    一.定位方法 注意:元素属性必须唯一存在 #id定位 find_element_by_id() #name定位 find_element_by_name() #class_name定位 find_el ...

  8. MySQL必知必会1-20章读书笔记

    MySQL备忘 目录 目录 使用MySQL 检索数据 排序检索数据 过滤数据 数据过滤 用通配符进行过滤 用正则表达式进行搜索 创建计算字段 使用数据处理函数 数值处理函数 汇总数据 分组数据 使用子 ...

  9. Docker docker-compose 配置lnmp开发环境

    1.安装docker yum -y install dockersystemctl start dockersystemctl enable docker 安装docker-compose https ...

  10. 【摘抄】深入解析Windows操作系统

    一.线程是一个进程内部的实体,也是Windows执行此进程时的调度实体.若没有线程,进程的程序将不可能运行.线程包含以下部件: 1.一组代表处理器状态的CPU寄存器中的内容. 2.两个栈:一个用于线程 ...