优先队列及堆排序

堆排序(Heap Sort)由威尔士-加拿大计算机科学家J. W. J. Williams1964年发明,它利用了二叉堆(A binary heap)的性质实现了排序,并证明了二叉堆数据结构的可用性。同年,美国籍计算机科学家R. W. Floyd在其树排序研究的基础上,发布了一个改进的更好的原地排序的堆排序版本。

堆排序属于选择类排序算法。

一、优先队列

优先队列是一种能完成以下任务的队列:插入一个数值,取出最小或最大的数值(获取数值,并且删除)。

优先队列可以用二叉树来实现,我们称这种结构为二叉堆。

最小堆和最大堆是二叉堆的一种,是一颗完全二叉树(一种平衡树)。

最小堆的性质:

  1. 父节点的值都小于左右儿子节点。
  2. 这是一个递归的性质。

最大堆的性质:

  1. 父节点的值都大于左右儿子节点。
  2. 这是一个递归的性质。

最大堆和最小堆实现方式一样,只不过根节点一个是最大的,一个是最小的。

1.1. 最大堆特征

最大堆实现细节(两个操作):

  1. push:向堆中插入数据时,首先在堆的末尾插入数据,如果该数据比父亲节点还大,那么交换,然后不断向上提升,直到没有大小颠倒为止。
  2. pop:从堆中删除最大值时,首先把最后一个值复制到根节点上,并且删除最后一个数值,然后和儿子节点比较,如果值小于儿子,与儿子节点交换,然后不断向下交换, 直到没有大小颠倒为止。在向下交换过程中,如果有两个子儿子都大于自己,就选择较大的。

最大堆有两个核心操作,一个是上浮,一个是下沉,分别对应pushpop

这是一个最大堆:

用数组表示为:[11 5 8 3 4]

1.2. 上浮操作

我们要往堆里push一个元素15,我们先把X = 15放到树最尾部,然后进行上浮操作。

因为15大于其父亲节点8,所以与父亲替换:

这时15还是大于其父亲节点11,继续替换:

操作一次push的最好时间复杂度为:O(1),因为第一次上浮时如果不大于父亲,那么就结束了。最坏的时间复杂度为:O(logn),相当于每次都大于父亲,会一直往上浮到根节点,翻转次数等于树的高度,而树的高度等于元素个数的对数:log(n)

1.3. 下沉操作

我们现在要将堆顶的元素pop出。如图我们要移除最大的元素11

我们先将根节点移除,然后将最尾部的节点4放在根节点上:

接着对根节点4进行下沉操作,与其两个儿子节点比较,发现较大的儿子节点84大,那么根节点4与其儿子节点8交换位置,向下翻转:

这样一直向下翻转就维持了最大堆的特征。

操作一次pop最好的时间复杂度也是:O(1),因为第一次比较时根节点就是最大的。最坏时间复杂度仍然是树的高度:O(logn)

1.4. 时间复杂度分析

构建一个最大堆,从空堆开始,每次添加元素到尾部后,需要向上翻转,最坏翻转次数是:

第一次添加元素翻转次数:log1
第二次添加元素翻转次数:log2
第三次添加元素翻转次数:不大于log3的最大整数
第四次添加元素翻转次数:log4
第五次添加元素翻转次数:不大于log5的最大整数
...
第N次添加元素翻转次数:不大于logn的最大整数 近似 = log(1)+log(2)+log(3)+...+log(n) = log(n!)

从一个最大堆,逐一移除堆顶元素,然后将堆尾元素置于堆顶后,向下翻转恢复堆特征,最坏翻转次数是:

第一次移除元素恢复堆时间复杂度:logn
第二次移除元素恢复堆时间复杂度:不大于log(n-1)的最大整数
第三次移除元素恢复堆时间复杂度:不大于log(n-2)的最大整数
...
第N次移除元素恢复堆时间复杂度:log1 近似 = log(1)+log(2)+log(3)+...+log(n) = log(n!)

根据斯特林公式:

可以进行证明log(n!)nlog(n)是同阶的:

所以构建一个最大堆的最坏时间复杂度是:O(nlogn)

从堆顶一个个移除元素,直到移完,整个过程最坏时间复杂度也是:O(nlogn)

从构建堆到移除堆,总的最坏复杂度是:O(nlogn)+O(nlogn),我们可以认为是:O(nlogn)

如果所有的元素都一样的情况下,建堆和移除堆的每一步都不需要翻转,最好时间复杂度为:O(n),复杂度主要在于遍历元素。

如果元素不全一样,即使在建堆的时候不需要翻转,但在移除堆的过程中一定会破坏堆的特征,导致恢复堆时需要翻转。比如一个n个元素的已排好的序的数列,建堆时每次都满足堆的特征,不需要上浮翻转,但在移除堆的过程中最尾部元素需要放在根节点,这个时候导致不满足堆的特征,需要下沉翻转。因此,在最好情况下,时间复杂度仍然是:O(nlog)

因此,最大堆从构建到移除,总的平均时间复杂度是:O(nlogn)

1.5. 最大堆实现

// 一个最大堆,一颗完全二叉树
// 最大堆要求节点元素都不小于其左右孩子
type Heap struct {
// 堆的大小
Size int
// 使用内部的数组来模拟树
// 一个节点下标为 i,那么父亲节点的下标为 (i-1)/2
// 一个节点下标为 i,那么左儿子的下标为 2i+1,右儿子下标为 2i+2
Array []int
} // 初始化一个堆
func NewHeap(array []int) *Heap {
h := new(Heap)
h.Array = array
return h
} // 最大堆插入元素
func (h *Heap) Push(x int) {
// 堆没有元素时,使元素成为顶点后退出
if h.Size == 0 {
h.Array[0] = x
h.Size++
return
} // i 是要插入节点的下标
i := h.Size // 如果下标存在
// 将小的值 x 一直上浮
for i > 0 {
// parent为该元素父亲节点的下标
parent := (i - 1) / 2 // 如果插入的值小于等于父亲节点,那么可以直接退出循环,因为父亲仍然是最大的
if x <= h.Array[parent] {
break
} // 否则将父亲节点与该节点互换,然后向上翻转,将最大的元素一直往上推
h.Array[i] = h.Array[parent]
i = parent
} // 将该值 x 放在不会再翻转的位置
h.Array[i] = x // 堆数量加一
h.Size++
} // 最大堆移除根节点元素,也就是最大的元素
func (h *Heap) Pop() int {
// 没有元素,返回-1
if h.Size == 0 {
return -1
} // 取出根节点
ret := h.Array[0] // 因为根节点要被删除了,将最后一个节点放到根节点的位置上
h.Size--
x := h.Array[h.Size] // 将最后一个元素的值先拿出来
h.Array[h.Size] = ret // 将移除的元素放在最后一个元素的位置上 // 对根节点进行向下翻转,小的值 x 一直下沉,维持最大堆的特征
i := 0
for {
// a,b为下标 i 左右两个子节点的下标
a := 2*i + 1
b := 2*i + 2 // 左儿子下标超出了,表示没有左子树,那么右子树也没有,直接返回
if a >= h.Size {
break
} // 有右子树,拿到两个子节点中较大节点的下标
if b < h.Size && h.Array[b] > h.Array[a] {
a = b
} // 父亲节点的值都大于或等于两个儿子较大的那个,不需要向下继续翻转了,返回
if x >= h.Array[a] {
break
} // 将较大的儿子与父亲交换,维持这个最大堆的特征
h.Array[i] = h.Array[a] // 继续往下操作
i = a
} // 将最后一个元素的值 x 放在不会再翻转的位置
h.Array[i] = x
return ret
}

以上为最大堆的实现。

三、普通堆排序

根据最大堆,堆顶元素一直是最大的元素特征,可以实现堆排序。

先构建一个最小堆,然后依次把根节点元素pop出即可:

func main() {
list := []int{5, 9, 1, 6, 8, 14, 6, 49, 25, 4, 6, 3} // 构建最大堆
h := NewHeap(list)
for _, v := range list {
h.Push(v)
} // 将堆元素移除
for range list {
h.Pop()
} // 打印排序后的值
fmt.Println(list)
}

输出:

1 3 4 5 6 6 6 8 9 14 25 49

根据以上最大堆的时间复杂度分析,从堆构建到移除最坏和最好的时间复杂度:O(nlogn),这也是堆排序的最好和最坏的时间复杂度。

这样实现的堆排序是普通的堆排序,性能不是最优的。

因为一开始会认为堆是空的,每次添加元素都需要添加到尾部,然后向上翻转,需要用Heap.Size来记录堆的大小增长,这种堆构建,可以认为是非原地的构建,影响了效率。

美国籍计算机科学家R. W. Floyd改进的原地自底向上的堆排序,不会从空堆开始,而是把待排序的数列当成一个混乱的最大堆,从底层逐层开始,对元素进行下沉操作,一直恢复最大堆的特征,直到根节点。

将构建堆的时间复杂度从O(nlogn)降为O(n),总的堆排序时间复杂度从O(2nlogn)改进到O(n+nlogn)

三、自底向上堆排序

自底向上堆排序,仅仅将构建堆的时间复杂度从O(nlogn)改进到O(n),其他保持不变。

这种堆排序,不再每次都将元素添加到尾部,然后上浮翻转,而是在混乱堆的基础上,从底部向上逐层进行下沉操作,下沉操作比较的次数会减少。步骤如下:

  1. 先对最底部的所有非叶子节点进行下沉,即这些非叶子节点与它们的儿子节点比较,较大的儿子和父亲交换位置。
  2. 接着从次二层开始的非叶子节点重复这个操作,直到到达根节点最大堆就构建好了。

从底部开始,向上推进,所以这种堆排序又叫自底向上的堆排序。

为什么自底向上构建堆的时间复杂度是:O(n)。证明如下:

k层的非叶子节点的数量为n/2^k,每一个非叶子节点下沉的最大次数为其子孙的层数:k,而树的层数为logn层,那么总的翻转次数计算如下:

因为如下的公式是成立的:

所以翻转的次数计算结果为:2n次。也就是构建堆的时间复杂度为:O(n)

我们用非递归的形式来实现,非递归相对容易理解:

package main

import "fmt"

// 先自底向上构建最大堆,再移除堆元素实现堆排序
func HeapSort(array []int) {
// 堆的元素数量
count := len(array) // 最底层的叶子节点下标,该节点位置不定,但是该叶子节点右边的节点都是叶子节点
start := count/2 + 1 // 最后的元素下标
end := count - 1 // 从最底层开始,逐一对节点进行下沉
for start >= 0 {
sift(array, start, count)
start-- // 表示左偏移一个节点,如果该层没有节点了,那么表示到了上一层的最右边
} // 下沉结束了,现在要来排序了
// 元素大于2个的最大堆才可以移除
for end > 0 {
// 将堆顶元素与堆尾元素互换,表示移除最大堆元素
array[end], array[0] = array[0], array[end]
// 对堆顶进行下沉操作
sift(array, 0, end)
// 一直移除堆顶元素
end--
}
} // 下沉操作,需要下沉的元素时 array[start],参数 count 只要用来判断是否到底堆底,使得下沉结束
func sift(array []int, start, count int) {
// 父亲节点
root := start // 左儿子
child := root*2 + 1 // 如果有下一代
for child < count {
// 右儿子比左儿子大,那么要翻转的儿子改为右儿子
if count-child > 1 && array[child] < array[child+1] {
child++
} // 父亲节点比儿子小,那么将父亲和儿子位置交换
if array[root] < array[child] {
array[root], array[child] = array[child], array[root]
// 继续往下沉
root = child
child = root*2 + 1
} else {
return
}
}
} func main() {
list := []int{5, 9, 1, 6, 8, 14, 6, 49, 25, 4, 6, 3} HeapSort(list) // 打印排序后的值
fmt.Println(list)
}

输出:

[1 3 4 5 6 6 6 8 9 14 25 49]

系列文章入口

我是陈星星,欢迎阅读我亲自写的 数据结构和算法(Golang实现),文章首发于 阅读更友好的GitBook

数据结构和算法(Golang实现)(24)排序算法-优先队列及堆排序的更多相关文章

  1. 数据结构和算法(Golang实现)(25)排序算法-快速排序

    快速排序 快速排序是一种分治策略的排序算法,是由英国计算机科学家Tony Hoare发明的, 该算法被发布在1961年的Communications of the ACM 国际计算机学会月刊. 注:A ...

  2. 数据结构和算法(Golang实现)(18)排序算法-前言

    排序算法 人类的发展中,我们学会了计数,比如知道小明今天打猎的兔子的数量是多少.另外一方面,我们也需要判断,今天哪个人打猎打得多,我们需要比较. 所以,排序这个很自然的需求就出来了.比如小明打了5只兔 ...

  3. 数据结构和算法(Golang实现)(19)排序算法-冒泡排序

    冒泡排序 冒泡排序是大多数人学的第一种排序算法,在面试中,也是问的最多的一种,有时候还要求手写排序代码,因为比较简单. 冒泡排序属于交换类的排序算法. 一.算法介绍 现在有一堆乱序的数,比如:5 9 ...

  4. 数据结构和算法(Golang实现)(20)排序算法-选择排序

    选择排序 选择排序,一般我们指的是简单选择排序,也可以叫直接选择排序,它不像冒泡排序一样相邻地交换元素,而是通过选择最小的元素,每轮迭代只需交换一次.虽然交换次数比冒泡少很多,但效率和冒泡排序一样的糟 ...

  5. 数据结构和算法(Golang实现)(21)排序算法-插入排序

    插入排序 插入排序,一般我们指的是简单插入排序,也可以叫直接插入排序.就是说,每次把一个数插到已经排好序的数列里面形成新的排好序的数列,以此反复. 插入排序属于插入类排序算法. 除了我以外,有些人打扑 ...

  6. 数据结构和算法(Golang实现)(22)排序算法-希尔排序

    希尔排序 1959 年一个叫Donald L. Shell (March 1, 1924 – November 2, 2015)的美国人在Communications of the ACM 国际计算机 ...

  7. 数据结构和算法(Golang实现)(23)排序算法-归并排序

    归并排序 归并排序是一种分治策略的排序算法.它是一种比较特殊的排序算法,通过递归地先使每个子序列有序,再将两个有序的序列进行合并成一个有序的序列. 归并排序首先由著名的现代计算机之父John_von_ ...

  8. 数据结构和算法(Golang实现)(26)查找算法-哈希表

    哈希表:散列查找 一.线性查找 我们要通过一个键key来查找相应的值value.有一种最简单的方式,就是将键值对存放在链表里,然后遍历链表来查找是否存在key,存在则更新键对应的值,不存在则将键值对链 ...

  9. 数据结构和算法(Golang实现)(27)查找算法-二叉查找树

    二叉查找树 二叉查找树,又叫二叉排序树,二叉搜索树,是一种有特定规则的二叉树,定义如下: 它是一颗二叉树,或者是空树. 左子树所有节点的值都小于它的根节点,右子树所有节点的值都大于它的根节点. 左右子 ...

随机推荐

  1. 我的第一个html静态网页

    <!doctype html> <html>     <head>         <title>王兆国的个人博客</title>      ...

  2. [Docker6] Docker compose多容器运行与管理

    六.Docker compose docker compose就是通过yml文件来定义和运行多个容器docker应用程序的工具,三步过程就能跑起一个compose: 定义应用程序的环境(yml中) 定 ...

  3. 【多校】2019 Multi-University Training Contest 1官方题解

    Blank 定义dp[i][j][k][t]dp[i][j][k][t]dp[i][j][k][t]代表填完前ttt个位置后,{0,1,2,3}\{0,1,2,3\}{0,1,2,3}这4个数字最后一 ...

  4. STL vector容器 和deque容器

    前言 STL是C++的框架,然后vector容器和deque容器又是STL的一部分... 这块的内容都是理解.概念为主,没什么捷径,希望读者能静下来记. 先来讲vector容器(单端动态数组) 1.v ...

  5. nginx 配置反向代理解决请求跨域问题

    server { listen ; server_name localhost; #charset koi8-r; #access_log logs/host.access.log main; roo ...

  6. 在EF中使用SQL执行简单高效的增删查操作

    随着平台数据的积累,对于数据访问的速度要求愈来愈高.优化后台访问性能,将是之后的一个重点任务. 但是,后台在项目开发初期采用的是Abp(Lite DDD)框架,集成EnityFramework.因为之 ...

  7. python—time模块

    timetime模块提供各种时间相关的功能,与时间相关的模块有:time,datetime,calendar等. 时间有三种表示方式,一种是时间戳.一种是格式化时间.一种是时间元组.时间戳和格式化时间 ...

  8. Windows程序卡顿、无响应问题定位

    当windows程序出现异常.界面卡顿.无响应情况时,在有工程和源码的情况下,程序员通常是打开IDE,在DEBUG模式下进行调试.但如果是一个RELEASE程序,且无调试环境,该如何来定位呢. 这里介 ...

  9. PHP友盟推送消息踩坑及处理

    公司的客户端的推送选用友盟推送,但是友盟的官方文档描述很少,对新手很不友好,所以特写此采坑纪录,废话不多说上代码. 公司业务只涉及单播和广播.所以只提供了单播和广播,业务拓展的话会补充其余部分. 消息 ...

  10. Linux 《conky配置说明书》

    名称 conky - 最初基于躯干代码的X系统监视器,但更多的kickass.它只是继续给予它.是啊. 概要 conky [ options ] 描述 Conky是最初基于torsmo的X系统监视器. ...