[JSOI2019]精准预测(2-SAT+拓扑排序+bitset)
设第i个人在t时刻生/死为(x,0/1,t),然后显然能够连上(x,0,t)->(x,0,t-1),(x,1,t)->(x,1,t+1),然后对于每个限制,用朴素的2-SAT连边即可。
但这样的点数达到了O(nT),其实有一种方法可以只把限制的边连接建图,点数为4m,这样可能会被卡常。
有没有更优秀的做法?当然还是有的。对于2-SAT中的边(x,y),若y在2-SAT中无出边,则x->y与x->y的后继等价,于是点数可以控制在2n+2m。然后很容易发现,生、死状态的图均为拓扑图,而只有生->死的边没有死->生的边,所以原图是拓扑图所以我们的问题变成了对于每一个(x,0,T+1)求出它能够到达的所有(y,1,T+1)的状态数。于是可以topsort+bitset优化,为了能不爆内存,可以分批topsort,每次104个点左右是最好的。
#include<bits/stdc++.h>
using namespace std;
const int N=5e4+,M=3e5+;
struct node{int tp,t,x,y;};
int T,n,m,sum[N],ans[N],in[M],q[M],vis[N];
bitset<>tmp,b[M];
vector<int>G[M],vec[N];
vector<node>now;
void topsort(int L,int R)
{
int qs=,qe=;
for(int i=;i<=*sum[n];i++)for(int j=;j<G[i].size();j++)in[G[i][j]]++;
for(int i=;i<=*sum[n];i++)if(!in[i])q[qe++]=i;
while(qs<qe)
{
int u=q[qs++];
for(int i=;i<G[u].size();i++)
{
b[G[u][i]]|=b[u];
if(!--in[G[u][i]])q[qe++]=G[u][i];
}
}
tmp.reset();
for(int i=L;i<=R;i++)if(b[sum[i]][i-L])vis[i]=,tmp.set(i-L);
for(int i=;i<=n;i++)if(!vis[i])ans[i]+=(b[sum[i]]|tmp).count();
}
int main()
{
scanf("%d%d%d",&T,&n,&m);
for(int i=;i<=m;i++)
{
node u;scanf("%d%d%d%d",&u.tp,&u.t,&u.x,&u.y),u.tp^=;
now.push_back(u),vec[u.x].push_back(u.t);
}
for(int i=;i<=n;i++)
{
sort(vec[i].begin(),vec[i].end());
vec[i].push_back(T+);
int t=unique(vec[i].begin(),vec[i].end())-vec[i].begin();
sum[i]=sum[i-]+t,vec[i].resize(t);
}
for(int i=;i<now.size();i++)
{
int x=now[i].x,y=now[i].y,t=now[i].t;
int p=lower_bound(vec[x].begin(),vec[x].end(),t)-vec[x].begin()+sum[x-]+;
int q=lower_bound(vec[y].begin(),vec[y].end(),now[i].tp+t)-vec[y].begin()+sum[y-]+;
if(now[i].tp)G[q+sum[n]].push_back(p+sum[n]),G[p].push_back(q);
else G[q+sum[n]].push_back(p),G[p+sum[n]].push_back(q);
}
for(int u=;u<=n;u++)
for(int i=sum[u-]+;i<sum[u];i++)
G[i].push_back(i+),G[i++sum[n]].push_back(i+sum[n]);
for(int i=;i<=n;i+=)
{
for(int j=;j<=*sum[n];j++)b[j].reset();
for(int j=;i+j<=n&&j<;j++)b[sum[i+j]+sum[n]].set(j);
topsort(i,min(n,i+));
}
for(int i=;i<=n;i++)printf("%d ",vis[i]?:n-ans[i]-);
}
[JSOI2019]精准预测(2-SAT+拓扑排序+bitset)的更多相关文章
- [LOJ 3101] [Luogu 5332] [JSOI2019]精准预测(2-SAT+拓扑排序+bitset)
[LOJ 3101] [Luogu 5332] [JSOI2019]精准预测(2-SAT+拓扑排序+bitset) 题面 题面较长,略 分析 首先,发现火星人只有死和活两种状态,考虑2-SAT 建图 ...
- NOIP 车站分级 (luogu 1983 & codevs 3294 & vijos 1851) - 拓扑排序 - bitset
描述 一条单向的铁路线上,依次有编号为 1, 2, ..., n 的 n 个火车站.每个火车站都有一个级别,最低为 1 级.现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车 ...
- [BZOJ4484][JSOI2015]最小表示[拓扑排序+bitset]
题意 给你一个 \(n\) 个点 \(m\) 条边的 \(\rm DAG\) ,询问最多能够删除多少条边,使得图的连通性不变 \(n\leq 3\times 10^4\ ,m\leq 10^5\) . ...
- BZOJ4484 JSOI2015最小表示(拓扑排序+bitset)
考虑在每个点的出边中删除哪些.如果其出边所指向的点中存在某点能到达另一点,那么显然指向被到达点的边是没有用的.于是拓扑排序逆序处理,按拓扑序枚举出边,bitset维护可达点集合即可. #include ...
- 洛谷 P5332 - [JSOI2019]精准预测(2-SAT+bitset+分块处理)
洛谷题面传送门 七月份(7.31)做的题了,题解到现在才补,不愧是 tzc 首先不难发现题目中涉及的变量都是布尔型变量,因此可以考虑 2-SAT,具体来说,我们将每个人在每个时刻的可能的状态表示出来. ...
- BZOJ 4484: [Jsoi2015]最小表示(拓扑排序+bitset)
传送门 解题思路 \(bitset\)维护连通性,给每个点开个\(bitset\),第\(i\)位为\(1\)则表示与第\(i\)位联通.算答案时显然要枚举每条边,而枚举边的顺序需要贪心,一个点先到达 ...
- CH 2101 - 可达性统计 - [BFS拓扑排序+bitset状压]
题目链接:传送门 描述 给定一张N个点M条边的有向无环图,分别统计从每个点出发能够到达的点的数量.N,M≤30000. 输入格式 第一行两个整数N,M,接下来M行每行两个整数x,y,表示从x到y的一条 ...
- BZOJ5109 CodePlus 2017大吉大利,晚上吃鸡!(最短路+拓扑排序+bitset)
首先跑正反两遍dij求由起点/终点到某点的最短路条数,这样条件一就转化为f(S,A)*f(T,A)+f(S,B)*f(T,B)=f(S,T).同时建出最短路DAG,这样图中任何一条S到T的路径都是最短 ...
- [JSOI2019]精准预测
题目 这么明显的限制条件显然是\(\text{2-sat}\) 考虑按照时间拆点,\((0/1,x,t)\)表示\(x\)个人在时间\(t\)是生/死 有一些显然的连边 \[(0,x,t+1)-> ...
随机推荐
- WebSocket在建立连接时通过@PathParam获取页面传值
最近用Java下使用WebSocket,有一个需求,在页面与Java后台建立连接的时候获取页面上提供的参数,也就是在@OnOpen注解的方法里面获取一次页面的参数,有一个很简单的方法可以获得.即使用@ ...
- 装WIN7的一点心得
一.为什么要装WIN7 长久以来个人的习惯,WIN10用不来,总体安装思路是:下官方版,找方法激活 二.安装镜像的来源 这个网上版本五花八门,各种系统网站,但都会有软件捆绑等行为,还有浏览器中强制捆了 ...
- python人脸识别项目face-recognition
该项目基于Github上面的开源项目人脸识别face-recognition,主要是对图像和视频中的人脸进行识别,在开源项目给出的例子基础上对视频人脸识别的KNN算法进行了实现. 0x1 工程项目结构 ...
- sql server ------创建本地数据库 SQL Server 排序规则
sql server完整复制数据库 sql server导入导出方法 SQL Server 排序规则
- POJ 1995:Raising Modulo Numbers 快速幂
Raising Modulo Numbers Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5532 Accepted: ...
- JZOJ-2019-11-5 A组
T1 给定由 n 个点 m 条边组成的无向连通图,保证没有重边和自环. 你需要找出所有边,满足这些边恰好存在于一个简单环中.一个环被称为简单环,当且仅当它包含的所有点都只在这个环中被经过了一次.(即求 ...
- Arduino串口的一些高级用法
1.配置串口通信数据位.校验位.停止位通常我们使用Serial.begin(speed)来完成串口的初始化,这种方式,只能配置串口的波特率.而使用Serial.begin(speed, config) ...
- Social LSTM 实现代码分析
----- 2019.8.5更新 实现代码思维导图 ----- ----- 初始原文 ----- Social LSTM最早提出于文献 "Social LSTM: Human Traject ...
- iOS精美过度动画、视频会议、朋友圈、联系人检索、自定义聊天界面等源码
iOS精选源码 iOS 精美过度动画源码 iOS简易聊天页面以及容联云IM自定义聊天页面的实现思路 自定义cell的列表视图实现:置顶.拖拽.多选.删除 SSSearcher仿微信搜索联系人,高亮搜索 ...
- POJ-1308 Is It A Tree?(并查集判断是否是树)
http://poj.org/problem?id=1308 Description A tree is a well-known data structure that is either empt ...