Stream API为我们提供了Stream.reduce用来实现集合元素的归约。reduce函数有三个参数:

  • Identity标识:一个元素,它是归约操作的初始值,如果流为空,则为默认结果。
  • Accumulator累加器:具有两个参数的函数:归约运算的部分结果和流的下一个元素。
  • Combiner合并器(可选):当归约并行化时,或当累加器参数的类型与累加器实现的类型不匹配时,用于合并归约操作的部分结果的函数。



    注意观察上面的图,我们先来理解累加器:
  • 阶段累加结果作为累加器的第一个参数
  • 集合遍历元素作为累加器的第二个参数

Integer类型归约

reduce初始值为0,累加器可以是lambda表达式,也可以是方法引用。

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6);
int result = numbers
.stream()
.reduce(0, (subtotal, element) -> subtotal + element);
System.out.println(result); //21 int result = numbers
.stream()
.reduce(0, Integer::sum);
System.out.println(result); //21

String类型归约

不仅可以归约Integer类型,只要累加器参数类型能够匹配,可以对任何类型的集合进行归约计算。

List<String> letters = Arrays.asList("a", "b", "c", "d", "e");
String result = letters
.stream()
.reduce("", (partialString, element) -> partialString + element);
System.out.println(result); //abcde String result = letters
.stream()
.reduce("", String::concat);
System.out.println(result); //ancde

复杂对象归约

计算所有的员工的年龄总和。

Employee e1 = new Employee(1,23,"M","Rick","Beethovan");
Employee e2 = new Employee(2,13,"F","Martina","Hengis");
Employee e3 = new Employee(3,43,"M","Ricky","Martin");
Employee e4 = new Employee(4,26,"M","Jon","Lowman");
Employee e5 = new Employee(5,19,"F","Cristine","Maria");
Employee e6 = new Employee(6,15,"M","David","Feezor");
Employee e7 = new Employee(7,68,"F","Melissa","Roy");
Employee e8 = new Employee(8,79,"M","Alex","Gussin");
Employee e9 = new Employee(9,15,"F","Neetu","Singh");
Employee e10 = new Employee(10,45,"M","Naveen","Jain"); List<Employee> employees = Arrays.asList(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10); Integer total = employees.stream().map(Employee::getAge).reduce(0,Integer::sum);
System.out.println(total); //346
  • 先用map将Stream流中的元素由Employee类型处理为Integer类型(age)。
  • 然后对Stream流中的Integer类型进行归约

Combiner合并器的使用

除了使用map函数实现类型转换后的集合归约,我们还可以用Combiner合并器来实现,这里第一次使用到了Combiner合并器。

因为Stream流中的元素是Employee,累加器的返回值是Integer,所以二者的类型不匹配。这种情况下可以使用Combiner合并器对累加器的结果进行二次归约,相当于做了类型转换。

Integer total3 = employees.stream()
.reduce(0,(totalAge,emp) -> totalAge + emp.getAge(),Integer::sum); //注意这里reduce方法有三个参数
System.out.println(total); //346

计算结果和使用map进行数据类型转换的方式是一样的。

并行流数据归约(使用合并器)

对于大数据量的集合元素归约计算,更能体现出Stream并行流计算的威力。

在进行并行流计算的时候,可能会将集合元素分成多个组计算。为了更快的将分组计算结果累加,可以使用合并器。

Integer total2 = employees
.parallelStream()
.map(Employee::getAge)
.reduce(0,Integer::sum,Integer::sum); //注意这里reduce方法有三个参数 System.out.println(total); //346

欢迎关注我的博客,里面有很多精品合集

  • 本文转载注明出处(必须带连接,不能只转文字):字母哥博客

觉得对您有帮助的话,帮我点赞、分享!您的支持是我不竭的创作动力! 。另外,笔者最近一段时间输出了如下的精品内容,期待您的关注。

恕我直言你可能真的不会java第10篇-集合元素归约的更多相关文章

  1. 恕我直言你可能真的不会java第9篇-Stream元素的匹配与查找

    在我们对数组或者集合类进行操作的时候,经常会遇到这样的需求,比如: 是否包含某一个"匹配规则"的元素 是否所有的元素都符合某一个"匹配规则" 是否所有元素都不符 ...

  2. 恕我直言你可能真的不会java第4篇:Stream管道流Map操作

    一.回顾Stream管道流map的基础用法 最简单的需求:将集合中的每一个字符串,全部转换成大写! List<String> alpha = Arrays.asList("Mon ...

  3. 恕我直言你可能真的不会java第6篇:Stream性能差?不要人云亦云

    一.粉丝的反馈 问:stream比for循环慢5倍,用这个是为了啥? 答:互联网是一个新闻泛滥的时代,三人成虎,以假乱真的事情时候发生.作为一个技术开发者,要自己去动手去做,不要人云亦云. 的确,这位 ...

  4. 恕我直言你可能真的不会java第1篇:lambda表达式会用了么?

    本文配套教学视频:B站观看地址 在本号之前写过的一些文章中,笔者使用了lambda表达式语法,一些读者反映说代码看不懂.本以为java 13都已经出了,java 8中最重要特性lambda表达式大家应 ...

  5. 恕我直言你可能真的不会java第2篇:Java Stream API?

    一.什么是Java Stream API? Java Stream函数式编程接口最初是在Java 8中引入的,并且与lambda一起成为Java开发的里程碑式的功能特性,它极大的方便了开放人员处理集合 ...

  6. 恕我直言你可能真的不会java第7篇:像使用SQL一样排序集合

    在开始之前,我先卖个关子提一个问题:我们现在有一个Employee员工类. @Data @AllArgsConstructor public class Employee { private Inte ...

  7. 恕我直言你可能真的不会java第8篇-函数式接口

    一.函数式接口是什么? 所谓的函数式接口,实际上就是接口里面只能有一个抽象方法的接口.我们上一节用到的Comparator接口就是一个典型的函数式接口,它只有一个抽象方法compare. 只有一个抽象 ...

  8. 恕我直言你可能真的不会java第11篇-Stream API终端操作

    一.Java Stream管道数据处理操作 在本号之前写过的文章中,曾经给大家介绍过 Java Stream管道流是用于简化集合类元素处理的java API.在使用的过程中分为三个阶段.在开始本文之前 ...

  9. 恕我直言你可能真的不会java第12篇-如何使用Stream API对Map类型元素排序

    在这篇文章中,您将学习如何使用Java对Map进行排序.前几日有位朋友面试遇到了这个问题,看似很简单的问题,但是如果不仔细研究一下也是很容易让人懵圈的面试题.所以我决定写这样一篇文章.在Java中,有 ...

随机推荐

  1. Java实现 谁不爱打牌

    谁不爱打牌 [问题描述] BobLee最近在复习考研,但是他也喜欢打牌(有谁不爱玩牌呢?).但是作为一名ACMER,斗地主显然满足不了他的兴趣, 于是他和YYD一起YY出来了一个游戏规则,规则如下. ...

  2. Java实现 LeetCode 95 不同的二叉搜索树 II(二)

    95. 不同的二叉搜索树 II 给定一个整数 n,生成所有由 1 - n 为节点所组成的二叉搜索树. 示例: 输入: 3 输出: [ [1,null,3,2], [3,2,null,1], [3,1, ...

  3. Java实现 LeetCode 68 文本左右对齐

    68. 文本左右对齐 给定一个单词数组和一个长度 maxWidth,重新排版单词,使其成为每行恰好有 maxWidth 个字符,且左右两端对齐的文本. 你应该使用"贪心算法"来放置 ...

  4. CentOS7搭建Pacemaker高可用集群(1)

    Pacemaker是Red Hat High Availability Add-on的一部分.在RHEL上进行试用的最简单方法是从Scientific Linux 或CentOS存储库中进行安装 环境 ...

  5. Java基础(十)

    一.XML概述 属性文件是用来描述程序配置,属性文件包含了一组名/值对.属性文件采用的是一种单一的平面层次结构,同时属性文件要求键是唯一的. XML格式能够表达层次结构,并且重复的元素不会被曲解. H ...

  6. Spring zuul 快速入门实践 --看zuul如何进行服务转发

    zuul 作为springCloud 的全家桶组件之一,有着不可或缺的分量.它作为一个普通java API网关,自有网关的好处: 避免将内部信息暴露给外部: 统一服务端应用入口: 为微服务添加额外的安 ...

  7. 【译】构造和匹配二进制(Efficiency Guide)

    可以通过以下方式有效地构建二进制: my_list_to_binary(List) -> my_list_to_binary(List, <<>>). ​ my_list ...

  8. 基于 abp vNext 和 .NET Core 开发博客项目 - Blazor 实战系列(五)

    系列文章 基于 abp vNext 和 .NET Core 开发博客项目 - 使用 abp cli 搭建项目 基于 abp vNext 和 .NET Core 开发博客项目 - 给项目瘦身,让它跑起来 ...

  9. Python多线程 - threading

    目录 1. GIL 2. API 3. 创建子线程 4. 线程同步 4.1. 有了GIL,是否还需要同步? 4.1.1. 死锁 4.1.2. 竞争条件 4.1.3. GIL去哪儿了 4.2. Lock ...

  10. [转] linux操作系统下c语言编程入门--基础知识

    点击阅读原文 这篇文章介绍在LINUX下进行C语言编程所需要的基础知识.在这篇文章当中,我们将会学到以下内容: 1. 源程序编译        2. Makefile的编写        3. 程序库 ...