单源最短路问题--朴素Dijkstra & 堆优化Dijkstra
许久没有写博客,更新一下~
Dijkstra两种典型写法
1. 朴素Dijkstra 时间复杂度O(N^2) 适用:稠密图(点较少,分布密集)
#include <cstdio>
#include <iostream>
#include <cstring> using namespace std;
const int N=;
int n, m;
int g[N][N], dist[N];
bool st[N]; int dijkstra()
{
memset(dist, 0x3f, sizeof(dist));
dist[]=;
for(int i=; i<n; i++)
{
int t=-;
for(int j=; j<=n; j++)
if(!st[j] && (t==- || dist[t]>dist[j])) t=j; //1. S中求最近的点,目前到起点的最小值
st[t]=true; //2. 更新状态 t点到起点的最短路已经被确定
for(int j=; j<=n; j++)
dist[j]=min(dist[j], dist[t]+g[t][j]); //3. 用t更新,经过t可能构成的最短路
}
if(dist[n]==0x3f3f3f3f) return -;
else return dist[n];
} int main()
{
scanf("%d%d", &n, &m);
memset(g, 0x3f, sizeof(g));
for(int i=; i<m; i++)
{
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
g[x][y]=min(g[x][y], z);
}
printf("%d\n", dijkstra());
return ;
}
2. 堆优化Dijkstra 时间复杂度:O(m*log(n)) 适合:稀疏图(边较多,点分布不集中)
#include <cstdio>
#include <iostream>
#include <queue>
#include <cstring> using namespace std;
const int N=1e5+;
typedef pair<int, int> PII;
int h[N], e[N], ne[N], w[N], idx;
bool st[N];
int n, m, dist[N]; void add(int a, int b, int c)
{
e[idx]=b, ne[idx]=h[a], w[idx]=c, h[a]=idx++; //建图
} int dijkstra()
{
memset(dist, 0x3f, sizeof(dist));
dist[]=;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({, });
while(heap.size())
{
auto u=heap.top(); //取已确定到起点最小距离的点, O(1)
heap.pop();
int ver=u.second, dis=u.first;
if(st[ver]) continue;
st[ver]=true;
for(int i=h[ver]; i!=-; i=ne[i])
{
int j=e[i];
if(!st[j] && dist[j]>dis+w[i]) //这里的dis可以写成dist[ver]
{ //用pair存储距离、节点编号,为了以 距离 建堆
dist[j]=dist[ver]+w[i]; //注意这里的w[i] , 边的权值存储在节点对应位置
heap.push({dist[j], j}); //入堆,O(log(n))
} //每一条边都会被遍历到,总时间复杂度O(m*log(n))
}
}
if(dist[n]==0x3f3f3f3f) return -;
else return dist[n];
} int main()
{
scanf("%d%d", &n, &m);
memset(h, -, sizeof(h));
while(m--)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
printf("%d\n", dijkstra()); return ;
}
单源最短路问题--朴素Dijkstra & 堆优化Dijkstra的更多相关文章
- luogu P3371 & P4779 单源最短路径spfa & 最大堆优化Dijkstra算法
P3371 [模板]单源最短路径(弱化版) 题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出 ...
- 【Luogu P3371&P4779】【模板】单源最短路径(线段树优化Dijkstra)
线段树优化$\rm dijkstra$ 线段树每个节点维护$[l,r]$中$dist$最小的点,删除则把该点$dist$赋值为$+\infty$,然后更新该点影响到的线段树上的其他节点即可. 可以得到 ...
- hdu 2544 单源最短路问题 dijkstra+堆优化模板
最短路 Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- 洛谷 P3371 【模板】单源最短路径(堆优化dijkstra)
题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出发点的编号. 接下来M行每行包含三 ...
- 深入理解dijkstra+堆优化
深入理解dijkstra+堆优化 其实就这几种代码几种结构,记住了完全就可以举一反三,所以多记多练多优化多思考. Dijkstra 对于一个有向图或无向图,所有边权为正(边用邻接矩阵的形式给出), ...
- 堆优化 dijkstra 简介
dijkstra 前言 原本我真的不会什么 dijkstra 只用那已死的 spfa ,还有各种玄学优化,可是,我不能相信一个已死的算法,就像我不能相信自己. ps : 虽然他已经活了 序 我站在镜子 ...
- POJ 2502 - Subway Dijkstra堆优化试水
做这道题的动机就是想练习一下堆的应用,顺便补一下好久没看的图论算法. Dijkstra算法概述 //从0出发的单源最短路 dis[][] = {INF} ReadMap(dis); for i = 0 ...
- 配对堆优化Dijkstra算法小记
关于配对堆的一些小姿势: 1.配对堆是一颗多叉树. 2.包含优先队列的所有功能,可用于优化Dijkstra算法. 3.属于可并堆,因此对于集合合并维护最值的问题很实用. 4.速度快于一般的堆结构(左偏 ...
- 堆优化dijkstra
单源最短路径 题目链接:https://www.luogu.org/problemnew/show/P4779 直到做了这个题才发现我之前写的堆优化dijkstra一直是错的.. 这个堆优化其实很容易 ...
随机推荐
- 如何更换 App icon
每逢重大节日,App icon 就要跟一波"潮流"做一次更换,节日过后再换回普通.如何保证这两次切换流程丝滑顺畅呢? 应用内需要更换的 icon 包括两处,一个是 App 主 ic ...
- python:爬取博主的所有文章的链接、标题和内容
以爬取我自己的博客为例:https://www.cnblogs.com/Mr-choa/ 1.获取所有的文章的链接: 博客文章总共占两页,比如打开第一页:https://www.cnblogs.com ...
- Java进行二元操作类型转换
当对两个数值进行二元操作时,先要将两个操作数转换为同一种类型,然后再进行计算. 如果两个操作数中有一个是double类型,另一个操作数就会转换为double类型. 否则,如果其中一个操作数是float ...
- PTA | 1020. 月饼 (25)
月饼是中国人在中秋佳节时吃的一种传统食品,不同地区有许多不同风味的月饼.现给定所有种类月饼的库存量.总售价.以及市场的最大需求量,请你计算可以获得的最大收益是多少. 注意:销售时允许取出一部分库存.样 ...
- .NET Core项目部署到Linux(Centos7)(六)发布.NET Core 项目到Linux
目录 1.前言 2.环境和软件的准备 3.创建.NET Core API项目 4.VMware Workstation虚拟机及Centos 7安装 5.Centos 7安装.NET Core环境 6. ...
- Python 之 Json序列化嵌套类
想要用python自已手动序列化嵌套类,就要明白两个问题: 1.Json是什么? 2.Json支持什么类型? 答案显而易见 Json就是嵌套对象 Json在python中支持列表,字典(当然也支持in ...
- Linux C++ 网络编程学习系列(6)——多路IO之epoll高级用法
poll实现多路IO 源码地址:https://github.com/whuwzp/linuxc/tree/master/epoll_libevent 源码说明: server.cpp: 监听127. ...
- iOS技能 - 最新美团、百度、腾讯、头条、阿里 面试题目记录
关于面试题,可能没那么多时间来总结答案,有什么需要讨论的地方欢迎大家指教.主要记录一下准备过程,和面试的一些总结,希望能帮助到正在面试或者将要面试的同学吧. 美团 一面 1.简历上写的项目问了一遍,然 ...
- 文件上传——客户端检测绕过(JavaScript检测)(一)
前言 通常再一个web程序中,一般会存在登陆注册功能,登陆后一般会有上传头像等功能,如果上传验证不严格就可能造成攻击者直接上传木马,进而控制整个web业务控制权.下面通过实例,如果程序只进行了客户端J ...
- Java 基础增强
jdk与jre 要想深入了解Java必须对JDK的组成, 本文对JDK6里的目录做了基本的介绍,主要还是讲解 了下JDK里的各种可执行程序或工具的用途 Java(TM) 有两个平台 JRE 运行平台, ...