1. 预测房价、广告点击率:典型的神经网络,standard NN。

图像:卷积神经网络,CNN。

一维序列数据,如音频,翻译:循环神经网络,RNN。

无人驾驶,涉及到图像、雷达等更多的数据类型:混合的神经网络。

2. 结构化数据:数据的数据库,每一种特征都有明确的定义,如预测房价、广告点击率。目前主要的营收来源还是处理结构化数据。

非结构化数据:如音频、图像、文本,特征不明显。人类和你擅长处理非结构化数据。

3. 为什么近期神经网络一下子变这么厉害?一个神经网络牛逼的条件:1)神经网络的规模足够大;2)足够多的数据,这个数据往往要求是带标签的。

对于少量的训练数据,各种算法孰优孰劣不太明显,更依赖人手工设计的特征。

之前神经网络的进步主要依靠1)数据量的增加;2)硬件计算能力的提高。这些年算法方面也有了极大的创新,很多算法的创新点都是加速计算。比如,算法上很大的一个进步是从sigmoid激活函数转换到ReLU函数。sigmoid函数的问题是在左右两个方向都会饱和,梯度很小,导致学习变得非常慢。仅仅把sigmoid换成ReLU,就可以使得梯度下降法运行的快非常多。加快运算的另一个好处是,可以帮助我们更快的实现想法。神经网络的搭建很多时候是很依赖直觉的,所以快速实现想法实验验证,非常重要。

deeplearning.ai 神经网络和深度学习 week1 深度学习概论的更多相关文章

  1. deeplearning.ai 神经网络和深度学习 week1 深度学习概论 听课笔记

    1. 预测房价.广告点击率:典型的神经网络,standard NN. 图像:卷积神经网络,CNN. 一维序列数据,如音频,翻译:循环神经网络,RNN. 无人驾驶,涉及到图像.雷达等更多的数据类型:混合 ...

  2. deeplearning.ai 神经网络和深度学习 week4 深层神经网络 听课笔记

    1. 计算深度神经网络的时候,尽量向量化数据,不要用for循环.唯一用for循环的地方是依次在每一层做计算. 2. 最常用的检查代码是否有错的方法是检查算法中矩阵的维度. 正向传播: 对于单个样本,第 ...

  3. deeplearning.ai 神经网络和深度学习 week4 深层神经网络

    1. 计算深度神经网络的时候,尽量向量化数据,不要用for循环.唯一用for循环的地方是依次在每一层做计算. 2. 最常用的检查代码是否有错的方法是检查算法中矩阵的维度. 正向传播: 对于单个样本,第 ...

  4. deeplearning.ai 神经网络和深度学习 week3 浅层神经网络 听课笔记

    1. 第i层网络 Z[i] = W[i]A[i-1] + B[i],A[i] = f[i](Z[i]). 其中, W[i]形状是n[i]*n[i-1],n[i]是第i层神经元的数量: A[i-1]是第 ...

  5. deeplearning.ai 神经网络和深度学习 week2 神经网络基础 听课笔记

    1. Logistic回归是用于二分分类的算法. 对于m个样本的训练集,我们可能会习惯于使用for循环一个个处理,但在机器学习中,是把每一个样本写成一个列向量x,然后把m个列向量拼成一个矩阵X.这个矩 ...

  6. deeplearning.ai 神经网络和深度学习 week3 浅层神经网络

    1. 第i层网络 Z[i] = W[i]A[i-1] + B[i],A[i] = f[i](Z[i]). 其中, W[i]形状是n[i]*n[i-1],n[i]是第i层神经元的数量: A[i-1]是第 ...

  7. deeplearning.ai 神经网络和深度学习 week2 神经网络基础

    1. Logistic回归是用于二分分类的算法. 对于m个样本的训练集,我们可能会习惯于使用for循环一个个处理,但在机器学习中,是把每一个样本写成一个列向量x,然后把m个列向量拼成一个矩阵X.这个矩 ...

  8. Coursera深度学习(DeepLearning.ai)编程题&笔记

    因为是Jupyter Notebook的形式,所以不方便在博客中展示,具体可在我的github上查看. 第一章 Neural Network & DeepLearning week2 Logi ...

  9. 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录

    吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...

随机推荐

  1. CentOS7下MySQL8的二进制基本安装配置

    前言 基于本地Centos7.6虚拟机Mysql8的配置(亲测有效) 一.安装前的准备 1.到官网下载mysql-8.0.16-linux-glibc2.12-x86_64.tar.xz 2.通过Xs ...

  2. java求两个圆相交坐标

    最近由于项目需要,根据两个圆函数求出相交的坐标.实现代码如下,另感谢两圆求交点算法实现Java代码,虽然他所贡献的代码中存在问题,但仍有借鉴意义. 1.两个圆相交的数学求法 在中学数学中我们知道,一个 ...

  3. 使用Eclipse开发学习 Spring Boot 教程的内容小结

    spring-tool-suite使用教程,并创建spring配置文件 Spring Boot基础教程1-Spring Tool Suite工具的安装 Spring Boot基础教程2-RESTful ...

  4. echars 柱状图点击事件

     drawlineCRK() {       let _this = this;       ///绘制echarts 柱状图       let mycharts = this.$echarts.i ...

  5. 零相关|回归|相关|相关系数|回归解释相关|r判断相关性|相关系数的区间估计|数据类型|非线性回归

    零相关是什么? 零相关亦称“不相关”.相关的一种.两个变量的相关系数r=0时的相关.零相关表示两个变量非线性相关,这时两个变量可能相互独立,也可能曲线相关.对于正态变量,两个变量零相关与两个变量相互独 ...

  6. leetcode腾讯精选练习之最长公共前缀(九)

    最长公共前缀 题目 编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower"," ...

  7. gcc -l:手动添加链接库

    链接器把多个二进制的目标文件(object file)链接成一个单独的可执行文件.在链接过程中,它必须把符号(变量名.函数名等一些列标识符)用对应的数据的内存地址(变量地址.函数地址等)替代,以完成程 ...

  8. ubuntu Elasticsearch环境搭建

    https://www.cnblogs.com/pigzhu/p/4705870.html

  9. LGOJ1861 星之器

    前置扯淡 我对这个题目的评价和网上各位大佬的一样:人类智慧题 (显然我不具有人类智慧--) Description link 现在有一个 \(n \times m\) 的矩阵\(A\),里面的每个元素 ...

  10. 二十二、NFS服务深入讲解

    一.查看nfs服务: [root@nfsserve ~]# ps -ef|grep -E "rpc|nfs"rpc       1565     1  0 17:29 ?      ...