Bessie's been appointed the new watch-cow for the farm. Every night, it's her job to walk across the farm and make sure that no evildoers are doing any evil. She begins at the barn, makes her patrol, and then returns to the barn when she's done.

If she were a more observant cow, she might be able to just walk each of M (1 <= M <= 50,000) bidirectional trails numbered 1..M between N (2 <= N <= 10,000) fields numbered 1..N on the farm once and be confident that she's seen everything she needs to see. But since she isn't, she wants to make sure she walks down each trail exactly twice. It's also important that her two trips along each trail be in opposite directions, so that she doesn't miss the same thing twice.

A pair of fields might be connected by more than one trail. Find a path that Bessie can follow which will meet her requirements. Such a path is guaranteed to exist.

Input

* Line 1: Two integers, N and M.

* Lines 2..M+1: Two integers denoting a pair of fields connected by a path.

Output

* Lines 1..2M+1: A list of fields she passes through, one per line, beginning and ending with the barn at field 1. If more than one solution is possible, output any solution.

Sample Input

4 5
1 2
1 4
2 3
2 4
3 4

Sample Output

1
2
3
4
2
1
4
3
2
4
1

Hint

OUTPUT DETAILS:

Bessie starts at 1 (barn), goes to 2, then 3, etc...

 
思路:打印欧拉通路,题目保证有解,直接DFS打印即可,代码如下:
const int maxm = ;
const int maxn = ; struct Node {
int from, to;
Node(int _from, int _to) : from(_from), to(_to){}
}; int N, M, vis[maxn*];
vector<int> ans, G[maxm];
vector<Node> edges; void addedge(int u,int v) {
edges.push_back(Node(u, v));
G[u].push_back(edges.size() - );
} void dfs(int x) {
int len = G[x].size();
for(int i = ; i < len; ++i) {
if(!vis[G[x][i]]) {
vis[G[x][i]] = ;
dfs(edges[G[x][i]].to);
ans.push_back(edges[G[x][i]].to);
}
}
} int main() {
scanf("%d%d", &N, &M);
for (int i = ; i < M; ++i) {
int t1, t2;
scanf("%d%d", &t1, &t2);
addedge(t1, t2);
addedge(t2, t1);
}
dfs();
int len = ans.size();
for(int i = ; i < len; ++i)
printf("%d\n", ans[i]);
printf("1\n");
return ;
}

Day4 - D - Watchcow POJ - 2230的更多相关文章

  1. 欧拉回路输出(DFS,不用回溯!)Watchcow POJ 2230

    Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 8109   Accepted: 3551   Special Judge D ...

  2. [欧拉] poj 2230 Watchcow

    主题链接: http://poj.org/problem? id=2230 Watchcow Time Limit: 3000MS   Memory Limit: 65536K Total Submi ...

  3. POJ 2230 Watchcow(欧拉回路:输出点路径)

    题目链接:http://poj.org/problem?id=2230 题目大意:给你n个点m条边,Bessie希望能走过每条边两次,且两次的方向相反,让你输出以点的形式输出路径. 解题思路:其实就是 ...

  4. 【POJ 2230】 Watchcow

    [题目链接] http://poj.org/problem?id=2230 [算法] 欧拉回路 [代码] #include <algorithm> #include <bitset& ...

  5. POJ 2230 Watchcow

    Watchcow Time Limit: 3000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: 2 ...

  6. POJ 2230 Watchcow(有向图欧拉回路)

    Bessie's been appointed the new watch-cow for the farm. Every night, it's her job to walk across the ...

  7. POJ 2230 Watchcow (欧拉回路)

    Watchcow Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 5258   Accepted: 2206   Specia ...

  8. POJ 2230 Watchcow && USACO Watchcow 2005 January Silver (欧拉回路)

    Description Bessie's been appointed the new watch-cow for the farm. Every night, it's her job to wal ...

  9. POJ 2230 Watchcow 【欧拉路】

    Watchcow Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 6336   Accepted: 2743   Specia ...

随机推荐

  1. Python将数据保存为txt文件的方法

    f = open('name.txt',mode='w') #打开文件,若文件不存在系统自动创建. #参数name 文件名,mode 模式. #w 只能操作写入 r 只能读取 a 向文件追加 #w+ ...

  2. 使用TortoiseGit处理代码冲突

    使用TortoiseGit处理代码冲突  https://www.cnblogs.com/jason-beijing/p/5718190.html 场景一  user0 有新提交 user1 没有pu ...

  3. Pyhton语言的优缺点

    python作为一门高级编程语言,它的诞生虽然很偶然,但是它得到程序员的喜爱却是必然之路. 龟叔给Python的定位是“优雅”.“明确”.“简单”,所以Python程序看上去总是简单易懂,初学者学Py ...

  4. 原生JS 和 JQ 获取滚动条的高度,以及距离顶部的高度

    JQ:相对比较简便 获取浏览器显示区域(可视区域)的高度 : $(window).height(); 获取浏览器显示区域(可视区域)的宽度 : $(window).width(); 获取页面的文档高度 ...

  5. SRS源码——Listener

    1. 整理了一下Listener相关的UML类图:

  6. prototype入门----自定义创建元素

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. smoj2806建筑物

    题面 有R红色立方体,G绿色立方体和B蓝色立方体.每个立方体的边长是1.现在有一个N × N的木板,该板被划分成1×1个单元.现在要把所有的R+G+B个立方体都放在木板上.立方体必须放置在单元格内,单 ...

  8. jmeter实现文件下载

    通过浏览器下载文件时,会提示选择保存路径,但是利用测试工具jmeter请求时,在页面看到请求次数是增加了,而本地没有具体下载下来的文件. 需要在具体的文件下载请求下面,添加后置处理器-bean she ...

  9. 《React后台管理系统实战 :三》header组件:页面排版、天气请求接口及页面调用、时间格式化及使用定时器、退出函数

    一.布局及排版 1.布局src/pages/admin/header/index.jsx import React,{Component} from 'react' import './header. ...

  10. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 辅助类:显示下拉式功能

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...