[hdu3507 Print Article]斜率优化dp入门
题意:需要打印n个正整数,1个数要么单独打印要么和前面一个数一起打印,1次打印1组数的代价为这组数的和的平方加上常数M。求最小代价。
思路:如果令dp[i]为打印前i个数的最小代价,那么有
dp[i]=min(dp[j]+(sum[i]-sum[j])2+M),j<i
直接枚举转移是O(n2)的,然而这个方程可以利用斜率优化将复杂度降到O(n)。
根据斜率优化的一般思路,对当前考虑的状态i,考虑决策j和k(j<k),如果k比j优,那么根据转移方程有:dp[k]+(sum[i]-sum[k])2+M ≤ dp[j]+(sum[i]-sum[j])2+M
整理可得:dp[k]+sum[k]2-2*sum[i]*sum[k] ≤ dp[j]+sum[j]2-2*sum[i]*sum[j]
然后进一步得到:[(dp[k]+sum[k]2)-(dp[j]+sum[j]2)] / (2*sum[k] - 2*sum[j]) ≤ sum[i]
如果令 y(i)=dp[i]+sum[i]2,x(i)=2*sum[i],那么有:( y(k)-y(j) ) / ( x(k)-x(j) ) ≤ sum[i],不妨令左边=G[j][k],即"j到k的斜率",G[j][k] ≤ sum[i]
注意,上面的推理的因果是等价的,也就是说 "k比j优" ↔ "( y(k)-y(j) ) / ( x(k)-x(j) ) ≤ sum[i]成立"
如果从小到大计算每个状态,那么(1)在某次计算状态i时,k比j优,由于sum数组单调递增,所以在以后的状态计算里面k都比j优(2)考虑三个状态i,j,k(i<j<k),满足G[i][j]≥G[j][k],那么在计算状态t(>k)的时候,{ 假设G[j][k]≤sum[t],k就比j优,否则G[j][k]>sum[t],那么显然有G[i][j]>sum[t],所以j不比i优 },所以对于t>k而言,j既没有k优也没有i优,完全可以舍弃。
在(2)的约束下,所有可能成为子状态的点构成了1个凸包,假设当前在计算状态i,这个凸包中最“前面”的两个点依次为j,k,如果G[j][k]≤sum[i],那么k比j优,把i从凸包里面删掉然后继续这样考虑,否则有G[j][k]>sum[i],说明j是最优的,因为对任意t∈(k,i)&&t∈凸包,都有G[j][t]>G[j][k]>sum[i],也就是没有比j更优的了。
虽然推理过程比较多,但是最后的结论非常的优美,程序也非常短,更重要的是,直接将原来O(n2)的复杂度降成了线性!没有比这更激动人心的了
#include <bits/stdc++.h>
using namespace std;
#define pb(x) push_back(x)
#define mp(x, y) make_pair(x, y)
#define all(a) (a).begin(), (a).end()
#define mset(a, x) memset(a, x, sizeof(a))
#define mcpy(a, b) memcpy(a, b, sizeof(b))
#define cas() int T, cas = 0; cin >> T; while (T --)
template<typename T>bool umax(T&a, const T&b){return a<b?(a=b,true):false;}
template<typename T>bool umin(T&a, const T&b){return b<a?(a=b,true):false;}
typedef long long ll;
typedef pair<int, int> pii;
#ifndef ONLINE_JUDGE
#include "local.h"
#endif
const int N = 5e5 + 7;
int head, tail;
pii q[N];
int n, m, x, sum[N]; int sqr(int x) { return x * x;}
int getY(int p) { return q[p].second + sqr(sum[q[p].first]); }
int getX(int p) { return 2 * sum[q[p].first]; }
int up(int p) { return getY(p + 1) - getY(p); }
int down(int p) { return getX(p + 1) - getX(p); }
int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
while (cin >> n >> m) {
for (int i = 1; i <= n; i ++) {
scanf("%d", &x);
sum[i] = sum[i - 1] + x;
}
head = tail = 0;
q[tail ++] = mp(0, 0);
for (int i = 1; i <= n; i ++) {
while (tail - head > 1 && up(head) <= down(head) * sum[i]) head ++;
q[tail ++] = mp(i, q[head].second + sqr(sum[i] - sum[q[head].first]) + m);
while (tail - head > 2 && up(tail - 3) * down(tail - 2) >= up(tail - 2) * down(tail - 3)) {
swap(q[tail - 2], q[tail - 1]);
tail --;
}
}
cout << q[tail - 1].second << endl;
}
return 0;
}
[hdu3507 Print Article]斜率优化dp入门的更多相关文章
- hdu3507 Print Article[斜率优化dp入门题]
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU3507 Print Article —— 斜率优化DP
题目链接:https://vjudge.net/problem/HDU-3507 Print Article Time Limit: 9000/3000 MS (Java/Others) Mem ...
- HDU3507 Print Article(斜率优化dp)
前几天做多校,知道了这世界上存在dp的优化这样的说法,了解了四边形优化dp,所以今天顺带做一道典型的斜率优化,在百度打斜率优化dp,首先弹出来的就是下面这个网址:http://www.cnblogs. ...
- HDU3507 Print Article (斜率优化DP基础复习)
pid=3507">传送门 大意:打印一篇文章,连续打印一堆字的花费是这一堆的和的平方加上一个常数M. 首先我们写出状态转移方程 :f[i]=f[j]+(sum[i]−sum[j])2 ...
- hdu 3507 Print Article(斜率优化DP)
题目链接:hdu 3507 Print Article 题意: 每个字有一个值,现在让你分成k段打印,每段打印需要消耗的值用那个公式计算,现在让你求最小值 题解: 设dp[i]表示前i个字符需要消耗的 ...
- Print Article /// 斜率优化DP oj26302
题目大意: 经典题 数学分析 G(a,b)<sum[i]时 a优于b G(a,b)<G(b,c)<sum[i]时 b必不为最优 #include <bits/stdc++.h& ...
- hdu 3507 Print Article —— 斜率优化DP
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3507 设 f[i],则 f[i] = f[j] + (s[i]-s[j])*(s[i]-s[j]) + m ...
- hdu3507(初识斜率优化DP)
hdu3507 题意 给出 N 个数字,输出的时候可以选择连续的输出,每连续输出一串,它的费用是 这串数字和的平方加上一个常数 M. 分析 斜率优化dp,入门题. 参考 参考 得到 dp 方程后,发现 ...
- hdu3507Print Article(斜率优化dp)
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
随机推荐
- asp.net core webapi Session 内存缓存
Startup.cs文件中的ConfigureServices方法配置: #region Session内存缓存 services.Configure<CookiePolicyOptions&g ...
- 谈谈MySQL的索引
目录 索引 前言 是什么 B树 B+树 B树和B+树结构上异同 有什么用 怎么用 索引 前言 总所周知,数据库查询是数据库的最主要功能之一.我们都希望查询数据的速度能尽可能的快.而支撑这一快速的背后就 ...
- TensorFlow-keras fit的callbacks参数,定值保存模型
from tensorflow.python.keras.preprocessing.image import load_img,img_to_array from tensorflow.python ...
- application/x-www-form-urlencoded ,multipart/form-data, text/plain
APPLICATION/X-WWW-FORM-URLENCODED MULTIPART/FORM-DATA TEXT/PLAIN 后台返回的数据响应的格式类型 application/x-www-fo ...
- 4.K均值算法应用
一.课堂练习 from sklearn.cluster import KMeans import matplotlib.pyplot as plt import numpy as np from sk ...
- Nmap详细用法
探测主机存活 (1)-sP :进行ping扫描 (2) -sn: ping探测扫描主机, 不进行端口扫描 (3)-sA 发送ACK探测存活 端口扫描 (1) -sS :半开放扫描 (2) sT ...
- 2019-2020-1 20199310《Linux内核原理与分析》第三周作业
1.问题描述 计算机的3大法宝是存储程序计算机,函数调用堆栈和中断机制,存储程序计算机已经在上一个博客中进行具体描述,本文将在剩下两方面出发对操作系统是如何工作的进行学习和探讨. 2.解决过程 2.1 ...
- Qt5 escape spaces in path
There are two possible ways. You can either use escaped quotes (inserting the string between quotes) ...
- js的属性监听
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title ...
- js 之 箭头函数 (未学完)
js之箭头函数表达式 箭头函数表达式的语法比函数表达式更短,并且没有自己的this,arguments,super或 new.target.这些函数表达式更适用于那些本来需要匿名函数的地方,并且它们不 ...