numpy.random模块用法总结
from numpy import random
numpy.random.uniform(low=0.0, high=1.0, size=None)
生出size个符合均分布的浮点数,取值范围为[low, high),默认取值范围为[0, 1.0)
>>> random.uniform()
0.3999807403689315
>>> random.uniform(size=1)
array([0.55950578])
>>> random.uniform(5, 6)
5.293682668235986
>>> random.uniform(5, 6, size=(2,3))
array([[5.82416021, 5.68916836, 5.89708586],
[5.63843125, 5.22963754, 5.4319899 ]])
numpy.random.rand(d0, d1, ..., dn)
生成一个(d0, d1, ..., dn)维的数组,数组的元素取自[0, 1)上的均分布,若没有参数输入,则生成一个数
>>> random.rand()
0.4378166124207712
>>> random.rand(1)
array([0.69845956])
>>> random.rand(3,2)
array([[0.15725424, 0.45786148],
[0.63133098, 0.81789056],
[0.40032941, 0.19108526]])
>>> random.rand(3,2,1)
array([[[0.00404447],
[0.3837963 ]], [[0.32518355],
[0.82482599]], [[0.79603205],
[0.19087375]]])
numpy.random.randint(low, high=None, size=None, dtype='I')
生成size个整数,取值区间为[low, high),若没有输入参数high则取值区间为[0, low)
>>> random.randint(8)
5
>>> random.randint(8, size=1)
array([1])
>>> random.randint(8, size=(2,2,3))
array([[[4, 7, 0],
[1, 4, 1]], [[2, 2, 5],
[7, 6, 4]]])
>>> random.randint(8, size=(2,2,3), dtype='int64')
array([[[5, 5, 6],
[2, 7, 2]], [[2, 7, 6],
[4, 7, 7]]], dtype=int64)
numpy.random.random_integers(low, high=None, size=None)
生成size个整数,取值区间为[low, high], 若没有输入参数high则取值区间为[1, low],注意这里左右都是闭区间
>>> random.random_integers(5)
1
>>> random.random_integers(5, size=1)
array([2])
>>> random.random_integers(4, 5, size=(2,2))
array([[5, 4],
[4, 4]])
numpy.random.random(size=None)
产生[0.0, 1.0)之间的浮点数
>>> random.random(5)
array([0.94128141, 0.98725499, 0.48435957, 0.90948135, 0.40570882])
>>> random.random()
0.49761416226728084
相同用法:
- numpy.random.random_sample
- numpy.random.ranf
- numpy.random.sample (抽取不重复)
numpy.random.bytes(length)
生成随机字节
>>> random.bytes(1)
b'%'
>>> random.bytes(2)
b'\xd0\xc3'
numpy.random.choice(a, size=None, replace=True, p=None)
从a(数组)中选取size(维度)大小的随机数,replace=True表示可重复抽取,p是a中每个数出现的概率
若a是整数,则a代表的数组是arange(a)
>>> random.choice(5)
3
>>> random.choice([0.2, 0.4])
0.2
>>> random.choice([0.2, 0.4], p=[1, 0])
0.2
>>> random.choice([0.2, 0.4], p=[0, 1])
0.4
>>> random.choice(5, 5)
array([1, 2, 4, 2, 4])
>>> random.choice(5, 5, False)
array([2, 0, 1, 4, 3])
>>> random.choice(100, (2, 3, 5), False)
array([[[43, 81, 48, 2, 8],
[33, 79, 30, 24, 83],
[ 3, 82, 97, 49, 98]], [[32, 12, 15, 0, 96],
[19, 61, 6, 42, 60],
[ 7, 93, 20, 18, 58]]])
numpy.random.permutation(x)
随机打乱x中的元素。若x是整数,则打乱arange(x),若x是一个数组,则将copy(x)的第一位索引打乱,意思是先复制x,对副本进行打乱处理,打乱只针对数组的第一维
>>> random.permutation(5)
array([1, 2, 3, 0, 4])
>>> random.permutation(5)
array([1, 4, 3, 2, 0])
>>> random.permutation([[1,2,3],[4,5,6]])
array([[1, 2, 3],
[4, 5, 6]])
>>> random.permutation([[1,2,3],[4,5,6]])
array([[4, 5, 6],
[1, 2, 3]])
numpy.random.shuffle(x)
与permutation类似,随机打乱x中的元素。若x是整数,则打乱arange(x). 但是shuffle会对x进行修改
>>> a = arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> random.permutation(a)
array([1, 4, 3, 2, 0])
>>> a
array([0, 1, 2, 3, 4])
>>> random.shuffle(a)
>>> a
array([4, 1, 3, 2, 0])
numpy.random.seed(seed=None)
设置随机生成算法的初始值
其它符合函数分布的随机数函数
- numpy.random.beta
- numpy.random.binomial
- numpy.random.chisquare
- numpy.random.dirichlet
- numpy.random.exponential
- numpy.random.f
- numpy.random.gamma
- numpy.random.geometric
- numpy.random.gumbel
- numpy.random.hypergeometric
- numpy.random.laplace
- numpy.random.logistic
- numpy.random.lognormal
- numpy.random.logseries
- numpy.random.multinomial
- numpy.random.multivariate_normal
- numpy.random.negative_binomial
- numpy.random.noncentral_chisquare
- numpy.random.noncentral_f
- numpy.random.normal
- numpy.random.pareto
- numpy.random.poisson
- numpy.random.power
- numpy.random.randn
- numpy.random.rayleigh
- numpy.random.standard_cauchy
- numpy.random.standard_exponential
- numpy.random.standard_gamma
- numpy.random.standard_normal
- numpy.random.standard_t
- numpy.random.triangular
- numpy.random.vonmises
- numpy.random.wald
- numpy.random.weibull
- numpy.random.zipf
numpy.random模块用法总结的更多相关文章
- numpy.random模块用法小结
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.r ...
- numpy.random模块常用函数解析
numpy.random模块中常用函数解析 numpy.random模块官方文档 1. numpy.random.rand(d0, d1, ..., dn)Create an array of the ...
- [转]numpy.random.randn()用法
在python数据分析的学习和应用过程中,经常需要用到numpy的随机函数,由于随机函数random的功能比较多,经常会混淆或记不住,下面我们一起来汇总学习下. import numpy as np ...
- random模块用法
最近生病,学习进度少许拖延,, import random # 随机取0~1之间的小数 print(random.random()) # 随机取2数之间的整数 print(random.randint ...
- NumPy的随机函数子库——numpy.random
NumPy的随机函数子库numpy.random 导入模块:import numpy as np 1.numpy.random.rand(d0,d1,...,dn) 生成一个shape为(d0,d1, ...
- Numpy的基础用法
1.用Numpy创建数组 numpy.array(object):创建数组,与array.array(typecode[, initializer])不同,array.array()只能创建一维数组 ...
- ZH奶酪:【Python】random模块
Python中的random模块用于随机数生成,对几个random模块中的函数进行简单介绍.如下:random.random() 用于生成一个0到1的随机浮点数.如: import random ra ...
- Python学习——numpy.random
numpy.random.rand numpy.random模块作用是生成随机数,其中numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点 ...
- np.random.random()函数 参数用法以及numpy.random系列函数大全
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.r ...
随机推荐
- opencv---颜色空间转化并实现物体跟踪
一.图像处理的基本操作 因为这是第一篇写opencv的笔记,故先讲讲在python下写opencv的基本操作.总共总结了三点如下: 开头一定要加编码声明:-*- coding: utf-8 -*- p ...
- 【Java杂货铺】JVM#Class类结构
代码编译的结果从本地机器码转为字节码,是储存格式发展的一小步,却是编程语言的一大步.--<深入理解Java虚拟机> 计算机只认识0和1.所以我们写的编程语言只有转义成二进制本地机器码才能让 ...
- DOM(Document Object Model)
DOM(Document Object Model): 结点的概念:整个文档就是由层次不同的多个节点组成,可以说结点代表了全部内容. 结点类型 1.元素结点 对于元素结点的n ...
- LeetCode No.133,134,135
No.133 CloneGraph 克隆图 题目 给你无向 连通 图中一个节点的引用,请你返回该图的 深拷贝(克隆). 图中的每个节点都包含它的值 val(int) 和其邻居的列表(list[Node ...
- VB6实现Excel多工作簿数据合并
以前的同事,工作需要,让我帮忙完成多个工作簿的汇总. 我就用最熟悉的VB6写了一个Form应用程序,这是因为我不知道她目前的系统和Office情况,如果太高大上了,她不会部署安装.索性就简单粗暴地来个 ...
- 4)date中的Ymd格式问题
以下是详细的参数: format 字符 说明 返回值例子日 --- ---d 月份中的第几天,有前导零的 2 位数字 01 到 31D 星期中的第几天,文本表示,3 个字母 Mon 到 Sunj 月份 ...
- HashMap相关知识
HashMap的工作原理是近年来常见的Java面试题.几乎每个Java程序员都知道HashMap,都知道哪里要用HashMap,知道Hashtable和HashMap之间的区别,那么为何这道面试题如此 ...
- 牛客-小w的a=b问题
题目传送门 sol1:老实做,预处理出所有2到1e5的素数,对所有数进行分解质因数,然后对比因子个数.感觉有点卡常,用了快读然后多次优化之后才过的,map也用上了. 素数筛,快速分解质因数 #incl ...
- 01_JDK的下载-安装-配置
下载 https://www.oracle.com/technetwork/java/javase/downloads/index.html 安装 1.安装路径不要有空格(去除安装路径中的Progra ...
- 如何使用Outlook 客户端配置其他邮箱客户端收发邮件
本文介绍Outlook2016客户端配置QQ邮箱收发邮件 1.打开Outlook客户端,文件->信息->-添加账户 2.输入需要添加的邮箱账户,点击连接 3.输入密码并连接 4.打开QQ邮 ...