from numpy import random

numpy.random.uniform(low=0.0, high=1.0, size=None)


生出size个符合均分布的浮点数,取值范围为[low, high),默认取值范围为[0, 1.0)

>>> random.uniform()
0.3999807403689315
>>> random.uniform(size=1)
array([0.55950578])
>>> random.uniform(5, 6)
5.293682668235986
>>> random.uniform(5, 6, size=(2,3))
array([[5.82416021, 5.68916836, 5.89708586],
[5.63843125, 5.22963754, 5.4319899 ]])

numpy.random.rand(d0, d1, ..., dn)


生成一个(d0, d1, ..., dn)维的数组,数组的元素取自[0, 1)上的均分布,若没有参数输入,则生成一个数

>>> random.rand()
0.4378166124207712
>>> random.rand(1)
array([0.69845956])
>>> random.rand(3,2)
array([[0.15725424, 0.45786148],
[0.63133098, 0.81789056],
[0.40032941, 0.19108526]])
>>> random.rand(3,2,1)
array([[[0.00404447],
[0.3837963 ]], [[0.32518355],
[0.82482599]], [[0.79603205],
[0.19087375]]])

numpy.random.randint(low, high=None, size=None, dtype='I')


生成size个整数,取值区间为[low, high),若没有输入参数high则取值区间为[0, low)

>>> random.randint(8)
5
>>> random.randint(8, size=1)
array([1])
>>> random.randint(8, size=(2,2,3))
array([[[4, 7, 0],
[1, 4, 1]], [[2, 2, 5],
[7, 6, 4]]])
>>> random.randint(8, size=(2,2,3), dtype='int64')
array([[[5, 5, 6],
[2, 7, 2]], [[2, 7, 6],
[4, 7, 7]]], dtype=int64)

numpy.random.random_integers(low, high=None, size=None)


生成size个整数,取值区间为[low, high], 若没有输入参数high则取值区间为[1, low],注意这里左右都是闭区间

>>> random.random_integers(5)
1
>>> random.random_integers(5, size=1)
array([2])
>>> random.random_integers(4, 5, size=(2,2))
array([[5, 4],
[4, 4]])

numpy.random.random(size=None)


产生[0.0, 1.0)之间的浮点数

>>> random.random(5)
array([0.94128141, 0.98725499, 0.48435957, 0.90948135, 0.40570882])
>>> random.random()
0.49761416226728084

相同用法:

  • numpy.random.random_sample
  • numpy.random.ranf
  • numpy.random.sample (抽取不重复)

numpy.random.bytes(length)


生成随机字节

>>> random.bytes(1)
b'%'
>>> random.bytes(2)
b'\xd0\xc3'

numpy.random.choice(a, size=None, replace=True, p=None)


从a(数组)中选取size(维度)大小的随机数,replace=True表示可重复抽取,p是a中每个数出现的概率

若a是整数,则a代表的数组是arange(a)

>>> random.choice(5)
3
>>> random.choice([0.2, 0.4])
0.2
>>> random.choice([0.2, 0.4], p=[1, 0])
0.2
>>> random.choice([0.2, 0.4], p=[0, 1])
0.4
>>> random.choice(5, 5)
array([1, 2, 4, 2, 4])
>>> random.choice(5, 5, False)
array([2, 0, 1, 4, 3])
>>> random.choice(100, (2, 3, 5), False)
array([[[43, 81, 48, 2, 8],
[33, 79, 30, 24, 83],
[ 3, 82, 97, 49, 98]], [[32, 12, 15, 0, 96],
[19, 61, 6, 42, 60],
[ 7, 93, 20, 18, 58]]])

numpy.random.permutation(x)


随机打乱x中的元素。若x是整数,则打乱arange(x),若x是一个数组,则将copy(x)的第一位索引打乱,意思是先复制x,对副本进行打乱处理,打乱只针对数组的第一维

>>> random.permutation(5)
array([1, 2, 3, 0, 4])
>>> random.permutation(5)
array([1, 4, 3, 2, 0])
>>> random.permutation([[1,2,3],[4,5,6]])
array([[1, 2, 3],
[4, 5, 6]])
>>> random.permutation([[1,2,3],[4,5,6]])
array([[4, 5, 6],
[1, 2, 3]])

numpy.random.shuffle(x)


与permutation类似,随机打乱x中的元素。若x是整数,则打乱arange(x). 但是shuffle会对x进行修改

>>> a = arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> random.permutation(a)
array([1, 4, 3, 2, 0])
>>> a
array([0, 1, 2, 3, 4])
>>> random.shuffle(a)
>>> a
array([4, 1, 3, 2, 0])

numpy.random.seed(seed=None)


设置随机生成算法的初始值

其它符合函数分布的随机数函数


numpy.random模块用法总结的更多相关文章

  1. numpy.random模块用法小结

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.r ...

  2. numpy.random模块常用函数解析

    numpy.random模块中常用函数解析 numpy.random模块官方文档 1. numpy.random.rand(d0, d1, ..., dn)Create an array of the ...

  3. [转]numpy.random.randn()用法

    在python数据分析的学习和应用过程中,经常需要用到numpy的随机函数,由于随机函数random的功能比较多,经常会混淆或记不住,下面我们一起来汇总学习下. import numpy as np ...

  4. random模块用法

    最近生病,学习进度少许拖延,, import random # 随机取0~1之间的小数 print(random.random()) # 随机取2数之间的整数 print(random.randint ...

  5. NumPy的随机函数子库——numpy.random

    NumPy的随机函数子库numpy.random 导入模块:import numpy as np 1.numpy.random.rand(d0,d1,...,dn) 生成一个shape为(d0,d1, ...

  6. Numpy的基础用法

    1.用Numpy创建数组 numpy.array(object):创建数组,与array.array(typecode[, initializer])不同,array.array()只能创建一维数组 ...

  7. ZH奶酪:【Python】random模块

    Python中的random模块用于随机数生成,对几个random模块中的函数进行简单介绍.如下:random.random() 用于生成一个0到1的随机浮点数.如: import random ra ...

  8. Python学习——numpy.random

    numpy.random.rand numpy.random模块作用是生成随机数,其中numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点 ...

  9. np.random.random()函数 参数用法以及numpy.random系列函数大全

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.r ...

随机推荐

  1. Java实现生产与消费(完美注释版)

    /** * 2019年8月8日17:42:23 * 目的:Java多线程实现生产与消费 * @author 张涛 * * 多态: * 一个父类的引用既可以指向父类对象 * 也可以指向子类对象 * 它会 ...

  2. Papa开启“点播孙子”模式,新型老年人服务能在国内扎根吗?

    "互联网+"对多个行业的全面赋能和渗入,的确让我们的生活与工作处处充满了便利.很多"跑断腿"才能办的事,现在只要在PC.智能手机上滑动鼠标.点击屏幕就能轻松搞定 ...

  3. JavaWeb过滤器(Filter)

    参考:https://blog.csdn.net/yuzhiqiang_1993/article/details/81288912 原理: 一般实现流程: 1.新建一个类,实现Filter接口2.实现 ...

  4. mediawiki资料

    1.如何通过ip访问mediawiki --- http://blog.sina.com.cn/s/blog_3f2a2b8e01000awx.html 发布到外部网络,更改htfp.config里面 ...

  5. Q_Go2

    一.变量 1.1 变量的概念 变量是计算机语言中存储数据的抽象概念.变量的功能是存储数据.变量通过变量名访问. 变量的本质是计算机分配的一小块内存,专门用于存放指定数据,在程序运行过程中该数值可以发生 ...

  6. SimpleDateFormat 线程安全的解决方案--DateTimeFormatter

    SimpleDateFormat并不是线程安全的,因为在SimpleDateFormat中持有一个Calendar类对象在Parse 和Format方法时会调用calendar.setTime(dat ...

  7. JacksonConfig

    package org.linlinjava.litemall.core.config; import com.fasterxml.jackson.annotation.JsonInclude; im ...

  8. gene cluster|DPG|拉马克主义变异|达尔文主义变异

    生命组学 A gene cluster is part of a gene family. A gene cluster is a group of two or more genes found w ...

  9. EXAM-2018-8-10

    EXAM-2018-8-10 F 突然卡了一会的水题 M 这题有点坑 考虑到一个数列的第一个数肯定会有 我们可以贪心的认为最优的方案是一个数列的第一个与另一个数列所有数的和.但是很容易找到反例 1 2 ...

  10. C++线程池的实现

    线程池,简单来说就是有一堆已经创建好的线程(最大数目一定),初始时他们都处于空闲状态,当有新的任务进来,从线程池中取出一个空闲的线程处理任务,然后当任务处理完成之后,该线程被重新放回到线程池中,供其他 ...