// tarjan算法求无向图的割点、点双连通分量并缩点
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int SIZE = 100010;
int head[SIZE], ver[SIZE * 2], Next[SIZE * 2];
int dfn[SIZE], low[SIZE], stack[SIZE], new_id[SIZE], c[SIZE];
int n, m, tot, num, root, top, cnt, tc;
bool cut[SIZE];
vector<int> dcc[SIZE];
int hc[SIZE], vc[SIZE * 2], nc[SIZE * 2]; void add(int x, int y) {
ver[++tot] = y, Next[tot] = head[x], head[x] = tot;
} void add_c(int x, int y) {
vc[++tc] = y, nc[tc] = hc[x], hc[x] = tc;
} void tarjan(int x) {
dfn[x] = low[x] = ++num;
stack[++top] = x;
if (x == root && head[x] == 0) { // 孤立点
dcc[++cnt].push_back(x);
return;
}
int flag = 0;
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i];
if (!dfn[y]) {
tarjan(y);
low[x] = min(low[x], low[y]);
if (low[y] >= dfn[x]) {
flag++;
if (x != root || flag > 1) cut[x] = true;
cnt++;
int z;
do {
z = stack[top--];
dcc[cnt].push_back(z);
} while (z != y);
dcc[cnt].push_back(x);
}
}
else low[x] = min(low[x], dfn[y]);
}
} int main() {
cin >> n >> m;
tot = 1;
for (int i = 1; i <= m; i++) {
int x, y;
scanf("%d%d", &x, &y);
if (x == y) continue;
add(x, y), add(y, x);
}
for (int i = 1; i <= n; i++)
if (!dfn[i]) root = i, tarjan(i);
for (int i = 1; i <= n; i++)
if (cut[i]) printf("%d ", i);
puts("are cut-vertexes");
for (int i = 1; i <= cnt; i++) {
printf("v-DCC #%d:", i);
for (int j = 0; j < dcc[i].size(); j++)
printf(" %d", dcc[i][j]);
puts("");
}
// 给每个割点一个新的编号(编号从cnt+1开始)
num = cnt;
for (int i = 1; i <= n; i++)
if (cut[i]) new_id[i] = ++num;
// 建新图,从每个v-DCC到它包含的所有割点连边
tc = 1;
for (int i = 1; i <= cnt; i++)
for (int j = 0; j < dcc[i].size(); j++) {
int x = dcc[i][j];
if (cut[x]) {
add_c(i, new_id[x]);
add_c(new_id[x], i);
}
else c[x] = i; // 除割点外,其它点仅属于1个v-DCC
}
printf("缩点之后的森林,点数 %d,边数 %d\n", num, tc / 2);
printf("编号 1~%d 的为原图的v-DCC,编号 >%d 的为原图割点\n", cnt, cnt);
for (int i = 2; i < tc; i += 2)
printf("%d %d\n", vc[i ^ 1], vc[i]);
}

图论--边双连通V-DCC缩点的更多相关文章

  1. 算法笔记_150:图论之双连通及桥的应用(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 Description In order to get from one of the F (1 <= F <= 5,000) graz ...

  2. hdu 4612 Warm up 双连通缩点+树的直径

    首先双连通缩点建立新图(顺带求原图的总的桥数,事实上因为原图是一个强连通图,所以桥就等于缩点后的边) 此时得到的图类似树结构,对于新图求一次直径,也就是最长链. 我们新建的边就一定是连接这条最长链的首 ...

  3. POJ 3177 Redundant Paths (边双连通+缩点)

    <题目链接> <转载于 >>>  > 题目大意: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新 ...

  4. 边双连通缩点+树dp 2015 ACM Arabella Collegiate Programming Contest的Gym - 100676H

    http://codeforces.com/gym/100676/attachments 题目大意: 有n个城市,有m条路,每条路都有边长,如果某几个城市的路能组成一个环,那么在环中的这些城市就有传送 ...

  5. UVA 10972 RevolC FaeLoN(边-双连通+缩点)

    很好的一道图论题,整整撸了一上午... 题意是给定一个无向图,要求将所有边变为有向边,求最少加入多少条有向边,使得该图强连通?这里先假设一个问题:给定一个无向子图,该子图具有怎样的性质才能使得将其无向 ...

  6. HDU4612Warm up 边双连通 Tarjan缩点

    N planets are connected by M bidirectional channels that allow instant transportation. It's always p ...

  7. POJ - 3177 Redundant Paths (边双连通缩点)

    题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...

  8. POJ-3352 Road Construction,tarjan缩点求边双连通!

    Road Construction 本来不想做这个题,下午总结的时候发现自己花了一周的时间学连通图却连什么是边双连通不清楚,于是百度了一下相关内容,原来就是一个点到另一个至少有两条不同的路. 题意:给 ...

  9. poj3352Road Construction 边双连通+伪缩点

    /* 对于边双连通分支,求法更为简单. 仅仅需在求出全部的桥以后,把桥边删除.\ 原图变成了多个连通块,则每一个连通块就是一个边双连通分支. 桥不属于不论什么 一个边双连通分支,其余的边和每一个顶点都 ...

随机推荐

  1. Fastdfs文件系统扩容

    1.简介     FastDFS文件服务器在设计时,为了支持大容量,存储节点(服务器)采用了分卷(或分组)的组织方式.存储系统由一个或多个卷组成,卷与卷之间的文件是相互独立的,所有卷的文件容量累加就是 ...

  2. Boyer-Moore字符串搜索(BM算法)的Python实现

    BM算法根据两个判据来进行字符串匹配,分别是“坏字符规则”和‘好后缀规则",其中好后缀规则可以单独使用,算法的图解可以参照下面这篇博文: https://www.cnblogs.com/wx ...

  3. postman 工具接口测试

    一.get:请求多个参数时,需要用&连接 eg:http://api.***.cn/api/user/stu_info?stu_name=小黑&set=女   eg:接口请求参数放在b ...

  4. VirtualBox的四种网络连接方式【转】

    VirtualBox中有4中网络连接方式: NAT Bridged Adapter Internal Host-only Adapter VMWare中有三种,其实他跟VMWare 的网络连接方式都是 ...

  5. c++全排列

    一.概念 从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列.当m=n时所有的排列情况叫全排列.如果这组数有n个,那么全排列数为n!个. 比如a ...

  6. Cucumber(3)——命令以及日志

    目录 回顾 基本执行命令 关于日志的生成 回顾 在上一节中,我介绍了cucumber一些基本的语法内容,如果你还没有进行相关的了解或者环境的配置,你可以点击这里来进行了解一下 在本节中,我会对cucu ...

  7. Mysql使用终端操作数据库

      使用终端操作数据库       1.如何查看有什么数据库?     show databases;        2.如何选择数据库?    use databasesName;       3. ...

  8. 从零开始学AB测试:躲坑篇

    AB测试的原理很简单,只用到了最简单的统计假设检验,但表面的简单通常都隐藏着陷阱,这一点没有经过实践的摸爬滚打是不容易看到的,今天我就把前人已经踩过的坑,一共15个,给大家分享一下.在分享之前,大家脑 ...

  9. vue原生表格怎样实现动态列及表格数据下载

    最近项目经常用到带有合并效果以及动态列的表格,而翻阅iview和element-ui官网没有找到合适的(也有可能自己的水平有限,不会改写),所以只好自己用原生表格写了一个,具体效果如下: 这个表格右侧 ...

  10. 引导 ARM Linux

    引导 ARM Linux 本文翻译自:https://www.kernel.org/doc/html/latest/arm/booting.html 引导 ARM Linux 需要一个引导加载程序,它 ...