P1495 CRT,P4777 EXCRT
updata on 2020.4.11
修正了 excrt 的一处笔误
CRT
求解方程:
x \equiv a_1 \pmod {m_1}\\
x \equiv a_2 \pmod {m_2}\\
\vdots \\
x \equiv a_n \pmod {m_n}\\
\end{cases}
\]
其中,保证\(m_i\)是两两互质的正整数,crt就是基于这个特征
我们记\(M=\prod_{i=1}^{n} m_i\),和\(M_i=\dfrac{M}{m_i}\),\(t_i\)满足\(M_it_i \equiv 1 \pmod {m_i}\)
即\(M_i\)是所有下标不为\(i\)的\(m\)乘起来,而\(t_i\)是\(M_i \bmod m_i\)的逆元
则对于任意的\(k\neq i\),\(a_iM_it_i\equiv 0\pmod {m_k}\),因为\(M_i\)中一定包含了\(m_k\)这个因数
而又因为\(M_it_i\equiv1\pmod{m_i}\),所以\(a_iM_it_i\equiv a_i\pmod{m_i}\)
所以可以说明
\]
为问题的一组解,且这个解在\(\mod M\)下唯一
当然通解就是\(x+kM,k\subset Z\)
当然求逆元的过程要用到exgcd,而题目要求最小正整数解,所以只要让解在\([0,M-1]\)中就行了
但是,如果直接\(M=\prod_{i=1}^n m_i\)会乘爆,要让\(M=\text{LCM}_{i=1}^n m_i\),可以有和上文叙述的一样的性质,下面的excrt也是一样
题目代码
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n;
LL a[15],m[15],M=1;
void exgcd(LL a,LL b,LL &x,LL &y){
if(!b){
x=1;y=0;
return;
}
exgcd(b,a%b,x,y);
LL tmp=x;x=y;
y=tmp-a/b*y;
}
int main(){
n=read();
for(reg int i=1;i<=n;i++){
m[i]=read();a[i]=read();
M=M/std::__gcd(M,m[i])*m[i];
}
LL ans=0,Mi,x,y;
for(reg int i=1;i<=n;i++){
Mi=M/m[i];
exgcd(Mi,m[i],x,y);
ans=((ans+Mi*x*a[i])%M+M)%M;
}
std::printf("%lld",ans);
return 0;
}
EXCRT
还是求解方程:
x \equiv a_1 \pmod {m_1}\\
x \equiv a_2 \pmod {m_2}\\
\vdots \\
x \equiv a_n \pmod {m_n}\\
\end{cases}
\]
但这次不保证\(m_i\)两两互质
不过这好像和CRT关系不大
考虑用数学归纳法,假设我们已知前\(i-1\)的解为\(ans\),并记\(M=\text{LCM}_{k=1}^{i-1}m_k\) 则其通解为\(ans+M\times t\)
那么,我们就要确定一个\(t\),使得\(ans+M\times t\equiv a_i\pmod {m_i}\)
然后新的\(ans=ans+M\times t\)
考虑求解上面那个同余方程的方法
因为exgcd可以求解方程\(ax+by=\gcd(a,b)\)
那么我们转变那个同余方程的形式:
\]
\]
那么如果\(\gcd(M,m_i)|(a_i-ans)\),则有解,题目保证了有解
用exgcd求出的是:
\]
那么让等式两边同时除以这个\(\gcd\)再同时乘以\(a_i-ans\)就行了
\]
那我们要求的这个\(t\)就是\(t'\dfrac{(a_i-ans)}{\gcd(M,m_i)}\)
注意在乘的时候会爆long long,要用int128或是龟速乘
我才不会告诉你们我快读不开long long见祖宗了
还有就是要通过\(ans=(ans+M)\bmod M\)来保证\(ans\)是正的
上代码,因为不开long long那事调了好长时间。。
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline LL read(){
LL x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n;
LL a[100006],m[100006];
inline LL mul(LL n,LL k,LL mod){
LL ans=0;
while(k){
if(k&1) ans=(ans+n)%mod;
k>>=1;
n=(n+n)%mod;
}
return ans;
}
LL exgcd(LL a,LL b,LL &x,LL &y){
if(!b){x=1;y=0;return a;}
LL ret=exgcd(b,a%b,x,y);
LL z=x;x=y;y=z-(a/b)*y;
return ret;
}
inline LL excrt(){
LL x,y;
LL M=m[1],ans=a[1];
for(reg int i=2;i<=n;i++){
LL b=((a[i]-ans)%m[i]+m[i])%m[i];
LL gcd=exgcd(M,m[i],x,y);
x=mul(x,b/gcd,m[i]);
ans+=M*x;
M*=m[i]/gcd;
ans=(ans+M)%M;
}
return ans;
}
int main(){
n=read();
for(reg int i=1;i<=n;i++) m[i]=read(),a[i]=read();
std::printf("%lld",excrt());
return 0;
}
话说去年暑假在洛谷网校就学过一遍crt和excrt了
但当时就没怎么理解清楚,更写不出代码
这次是因为扩展卢卡斯要用到crt,才来写了一遍这两个题。。。
P1495 CRT,P4777 EXCRT的更多相关文章
- 「算法笔记」CRT 与 exCRT
一.扩展欧几里得 求解方程 \(ax+by=\gcd(a,b)\). int exgcd(int a,int b,int &x,int &y){ if(!b) return x=1,y ...
- CRT和EXCRT学习笔记
蒟蒻maomao终于学会\(CRT\)啦!发一篇博客纪念一下(还有防止忘掉) \(CRT\)要解决的是这样一个问题: \[x≡a_1(mod m_1)\] \[x≡a_2(mod m_2)\] ...
- CRT和EXCRT简单学习笔记
中国剩余定理CRT 中国剩余定理是要求我们解决这样的一类问题: \[\begin{cases}x\equiv a_1\pmod {b_1} \\x\equiv a_2 \pmod{b_2}\\...\ ...
- 浅析中国剩余定理(从CRT到EXCRT))
前置知识 1. a%b=d,c%b=e, 则(a+c)%b=(d+e)%b(正确性在此不加证明) 2. a%b=1,则(d\(\times\)a)%b=d%b(正确性在此不加证明) 下面先看一道题(改 ...
- Algorithm: CRT、EX-CRT & Lucas、Ex-Lucas
中国剩余定理 中国剩余定理,Chinese Remainder Theorem,又称孙子定理,给出了一元线性同余方程组的有解判定条件,并用构造法给出了通解的具体形式. \[ \begin{aligne ...
- 关于一次同余方程的一类解法(exgcd,CRT,exCRT)
1.解同余方程: 同余方程可以转化为不定方程,其实就是,这样的问题一般用拓展欧几里德算法求解. LL exgcd(LL a,LL b,LL &x,LL &y){ if(!b){ x=; ...
- 中国剩余定理(CRT)及其扩展(EXCRT)详解
问题背景 孙子定理是中国古代求解一次同余式方程组的方法.是数论中一个重要定理.又称中国余数定理.一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作<孙子算经>卷下第 ...
- 中国剩余定理(CRT)
只看懂了CRT,EXCRT待补.... 心得:记不得这是第几次翻CRT了,每次都有迷迷糊糊的.. 中国剩余定理用来求解类似这样的方程组: 求解的过程中用到了同余方程. x=a1( mod x1) x= ...
- $NOIp2018$劝退记
鸽子博主好久没更博了,这一更可能以后都更不了了啊 \(Day~~1\) 考试爆零,已经无所畏惧了. 当作攒rp吧...qwq 晚上写了写数学总结,蒯了一堆人的博客资料,然后就学会了\(CRT\),\( ...
随机推荐
- go 基本包
像 fmt.os 等这样具有常用功能的内置包在 Go 语言中有 150 个以上,它们被称为标准库,大部分(一些底层的除外)内置于 Go 本身 unsafe: 包含了一些打破 Go 语言“类型安全”的命 ...
- 选择排序(C++,Java,Python实现)
排序算法之选择排序,选择排序,选择排序的基本思想描述为:每一趟在n-i+1(i=1,2,-,n-1)个记录中选取关键字最小的记录作为有序序列中第i个记录.具体来说,假设长度为n的数组arr,要按照从小 ...
- cmake添加版本号
vVersion.cmake文件内容如下: #vversion.cmake #vDateTime string(TIMESTAMP vDateTime "%Y%m%d-%H%M%S" ...
- 数据结构和算法(Golang实现)(15)常见数据结构-列表
列表 一.列表 List 我们又经常听到列表 List数据结构,其实这只是更宏观的统称,表示存放数据的队列. 列表List:存放数据,数据按顺序排列,可以依次入队和出队,有序号关系,可以取出某序号的数 ...
- (转) Windows Mobile和Windows CE的区别
转发自 http://blog.sina.com.cn/s/blog_6250bbe60100tsf3.html WinCE Windows CE 是一个可定制的操作系统: Windows Mobil ...
- PHP代码审计(初级篇)
一.常见的PHP框架 1.zendframwork: (ZF)是Zend公司推出的一套PHP开发框架 功能非常的强大,是一个重量级的框架,ZF 用 100%面向对象编码实现. ZF 的组件结构独一无二 ...
- shell脚本知识
1.提示符变量PS1 修改提示符变量:PS1="[u\@\h \t \w]" 修改环境变量设置文件bash_profile需要使用source或者.加上该文件使之生效 位置参数从1 ...
- stand up meeting 1/19/2016
part 组员 工作 工作耗时/h 明日计划 工作耗时/h UI 冯晓云 准备最后的发布和整个开发的整理总结 6 继续releas ...
- Jingwen‘s update
Bugs: The checkin button of the question answering page must be pressed twice to check in the result ...
- idea中哪些好用到飞起的插件,偷懒神器
idea中开发人员的偷懒神器-插件 本期推荐一些开发人员常用的一些idea插件.偷懒神器在此,不再秃头! 1. idea安装插件的方法. file->setting->plugins ...