题目

In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_ (data_structure))

Your job is to tell if a given complete binary tree is a heap.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers: M (<= 100), the number of trees to be tested; and N (1 < N <= 1000), the number of keys in each tree, respectively. Then M lines follow, each contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.

Output Specification:

For each given tree, print in a line “Max Heap” if it is a max heap, or “Min Heap” for a min heap, or “Not Heap” if it is not a heap at all. Then in the next line print the trees postorder traversal sequence. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line.

Sample Input:

3 8

98 72 86 60 65 12 23 50

8 38 25 58 52 82 70 60

10 28 15 12 34 9 8 56

Sample Output:

Max Heap

50 60 65 72 12 23 86 98

Min Heap

60 58 52 38 82 70 25 8

Not Heap

56 12 34 28 9 8 15 10

题目分析

已知完全二叉树的层序序列,求其为大顶堆还是小顶堆或者不是堆,并输出后序序列

解题思路

  1. 递归判断每个节点的左右子节点是否都大于等于自己(小顶堆),或者都小于等于自己(大顶堆)
  2. 利用完全二叉树层序序列,递归进行后序序列输出

Code

Code 01

#include <iostream>
#include <vector>
using namespace std;
vector<int> nds;
int n;
bool isMaxHeap(int index) {
int left = 2*index+1;
int right = 2*index+2;
if(left>=n&&right>=n)return true; //叶子节点,返回true
if(left<n&&nds[left]>nds[index])return false; //左子节点大于当前节点
if(right<n&&nds[right]>nds[index])return false; //右子节点大于当前节点
return isMaxHeap(left)&&isMaxHeap(right);
}
bool isMinHeap(int index) {
int left = 2*index+1;
int right = 2*index+2;
if(left>=n&&right>=n)return true; //叶子节点,返回true
if(left<n&&nds[left]<nds[index])return false; //左子节点小于当前节点
if(right<n&&nds[right]<nds[index])return false; //右子节点小于当前节点
return isMinHeap(left)&&isMinHeap(right);
}
void post(int index){
if(index>=n)return;
post(index*2+1);
post(index*2+2);
printf("%d%s",nds[index],index==0?"\n":" ");//后序遍历,根最后输出
}
int main(int argc,char * argv[]) {
int m;
scanf("%d %d",&m,&n);
for(int i=0; i<m; i++) {
nds.clear();
nds.resize(n);
for(int j=0; j<n; j++) {
scanf("%d", &nds[j]);
}
if(isMaxHeap(0)) {
printf("Max Heap\n");
} else if(isMinHeap(0)) {
printf("Min Heap\n");
} else {
printf("Not Heap\n");
}
post(0);
} return 0;
}

Code 02

#include <iostream>
#include <vector>
using namespace std;
int m, n;
vector<int> v;
void postOrder(int index) {
if (index >= n) return;
postOrder(index * 2 + 1);
postOrder(index * 2 + 2);
printf("%d%s", v[index], index == 0 ? "\n" : " ");
}
int main() {
scanf("%d%d", &m, &n);
v.resize(n);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) scanf("%d", &v[j]);
int flag = v[0] > v[1] ? 1 : -1;
for (int j = 0; j <= (n-1) / 2; j++) {
int left = j * 2 + 1, right = j * 2 + 2;
if (flag == 1 && (v[j] < v[left] || (right < n && v[j] < v[right]))) flag = 0;
if (flag == -1 && (v[j] > v[left] || (right < n && v[j] > v[right]))) flag = 0;
}
if (flag == 0) printf("Not Heap\n");
else printf("%s Heap\n", flag == 1 ? "Max" : "Min");
postOrder(0);
}
return 0;
}

PAT Advanced 1147 Heaps (30) [堆,树的遍历]的更多相关文章

  1. PAT 甲级 1147 Heaps (30 分) (层序遍历,如何建树,后序输出,还有更简单的方法~)

    1147 Heaps (30 分)   In computer science, a heap is a specialized tree-based data structure that sati ...

  2. PAT Advanced 1138 Postorder Traversal (25) [树的遍历,前序中序转后序]

    题目 Suppose that all the keys in a binary tree are distinct positive integers. Given the preorder and ...

  3. PAT Advanced 1020 Tree Traversals (25) [⼆叉树的遍历,后序中序转层序]

    题目 Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder an ...

  4. PAT甲级——1147 Heaps【30】

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap prope ...

  5. 1147. Heaps (30)

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap prope ...

  6. PAT甲级——1094 The Largest Generation (树的遍历)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/93311728 1094 The Largest Generati ...

  7. PAT Advanced A1021 Deepest Root (25) [图的遍历,DFS,计算连通分量的个数,BFS,并查集]

    题目 A graph which is connected and acyclic can be considered a tree. The height of the tree depends o ...

  8. 天梯赛L2-006. 树的遍历L3-010. 是否完全二叉搜索树

    L2-006. 树的遍历 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历 ...

  9. [PAT] 1147 Heaps(30 分)

    1147 Heaps(30 分) In computer science, a heap is a specialized tree-based data structure that satisfi ...

随机推荐

  1. 51nod 1179:最大的最大公约数

    1179 最大的最大公约数 题目来源: SGU 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 给出N个正整数,找出N个数两两之间最大公约数的最大值 ...

  2. Oracle 组函数count()

    1.count() 函数的参数除了可以是字段值和表达式外,还可以是“ * ”.如果是字段值或表达式,则忽略空值且考虑重复值:如果是“ * ”,则计算所有的行,也包括空值.如果要查询某字段非重复值的个数 ...

  3. python面试题整理(一)

    python基础:1.列表生成式和生成器表达式有什么区别 我说的是首先写法不一样,列表生成式用[],生成器表达式用(),其次列表生成是一次性生成一个完整的列表,生成器表达式返回的是一个一个的值,占用内 ...

  4. Java语言学习总结 扩展篇 包装类的概念及其使用

    包装类 包装类的概述 Java提供了两个类型系统,基本类型与引用类型,使用基本类型在于效率,然而很多情况,会创建对象使用,因为对象可以做更多的功能,如果想要我们的基本类型像对象一样操作,就可以使用基本 ...

  5. 5. 支撑高并发,高可用,海量数据备份恢复的Redis重要性

    商品详情页的架构实现 缓存架构 第一块儿,要掌握的很好的,就是redis架构 高并发,高可用,海量数据,备份,随时可以恢复,缓存架构如果要支撑这些要点,首先呢,redis就得支撑 redis架构,每秒 ...

  6. 第二阶段scrum-4

    1.整个团队的任务量: 2.任务看板: 会议照片: 产品状态: 前端制作完成,数据库在制作中.

  7. 无法启动APK安装也,报异常FileUriExposedException

    无法打开APK安装页,报异常FileUriExposedException, https://juejin.im/entry/58e4643db123db15eb79a902

  8. LeetCode题解分类汇总(包括剑指Offer和程序员面试金典,持续更新)

    LeetCode题解汇总(持续更新,并将逐步迁移到本博客列表中) 剑指Offer 数据结构 链表 序号 题目 难度 06 从尾到头打印链表 简单 18 删除链表的节点 简单 22 链表中倒数第k个节点 ...

  9. P 1026 程序运行时间

    转跳点:

  10. Go语言开发环境的搭建(Goland和VSCode)

    教程首发于:微信公众号<Go编程时光>,欢迎你一起来学习 1. 下载安装 Go语言 下载地址:https://golang.google.cn/dl/ 下载完成后,直接双击 msi 文件进 ...