线段树 C - Connected Components? CodeForces - 920E
这个题目居然可以用线段树写,好震惊,如果不是在线段树专题肯定想不到,但是就算在线段树的专题里面,我也不太会怎么写。
这个题目大意是,给你n m n代表n个点,m代表m条边,然后就是m行,每行两个数字,一个u一个v。
这个意思是u和v不想连,然后问你这个n个点形成了多少个联通块。
思路大概是这样,首先随意枚举一个点,然后直接更新每一个点的值+1,先消除自己的影响,然后对于每一个和它连的点的值都-1
然后查找一个值大于0 的点,再继续循环这个过程,如果找不到了就推出这个循环。
这个复杂度我不太会算。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <vector>
#include <stack>
#include <map>
#include <string>
#define inf 0x3f3f3f3f
#define inf64 0x3f3f3f3f3f3f3f3f
using namespace std;
typedef long long ll;
const int maxn = 4e5 + 10;
int cnt[maxn * 4], maxs[maxn * 4];
int lazy[maxn * 4]; void push_up(int id)
{
if (maxs[id << 1] < maxs[id << 1 | 1]) {
maxs[id] = maxs[id << 1 | 1];
cnt[id] = cnt[id << 1 | 1];
}
else {
maxs[id] = maxs[id << 1];
cnt[id] = cnt[id << 1];
}
// printf("cnt[%d]=%d cnt[%d]=%d\n", id << 1, cnt[id << 1], id << 1 | 1, cnt[id << 1 | 1]);
// printf("cnt[%d]=%d\n", id, cnt[id]);
} void build(int id,int l,int r)
{
lazy[id] = 0;
if(l==r)
{
cnt[id] = l;
maxs[id] = 0;
return;
}
int mid = (l + r) >> 1;
build(id << 1, l, mid);
build(id << 1 | 1, mid + 1, r);
push_up(id);
} void push_down(int id)
{
//printf("id=%d\n", id);
if (lazy[id] == 0) return;
maxs[id << 1] += lazy[id];
maxs[id << 1 | 1] += lazy[id];
lazy[id << 1] += lazy[id];
lazy[id << 1 | 1] += lazy[id];
lazy[id] = 0;
} void update(int id,int l,int r,const int x,const int y,int val)
{
// printf("id=%d l=%d r=%d x=%d y=%d\n", id, l, r, x, y);
if(x<=l&&y>=r)
{
maxs[id] += val;
lazy[id] += val;
return;
}
push_down(id);
int mid = (l + r) >> 1;
if (x <= mid) update(id << 1, l, mid, x, y, val);
if (y > mid) update(id << 1 | 1, mid + 1, r, x, y, val);
push_up(id);
} struct node
{
int v, nxt;
node(int v=0,int nxt=0):v(v),nxt(nxt){}
}ex[maxn];
int head[maxn], tot = 0, num;
void init()
{
memset(head, -1, sizeof(head));
tot = 0, num = 0;
} void add(int u,int v)
{
ex[tot] = node(v, head[u]);
head[u] = tot++;
ex[tot] = node(u, head[v]);
head[v] = tot++;
}
int a[maxn];
bool vis[maxn];
int n, m; int dfs(int x)
{
int res = 0;
build(1, 1, n);
while(1)
{
vis[x] = 1;
res++;
update(1, 1, n, 1, n, 1);
update(1, 1, n, x, x, -inf);
for (int i = head[x]; i != -1; i = ex[i].nxt)
{
int v = ex[i].v;
update(1, 1, n, v, v, -1);
}
// printf("\n\n");
if (maxs[1] <= 0) break;
x = cnt[1];
}
return res;
} int main()
{
init();
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
}
for(int i=1;i<=n;i++)
{
if (vis[i]) continue;
a[num++] = dfs(i);
}
sort(a, a + num);
printf("%d\n", num);
for (int i = 0; i < num; i++) printf("%d ", a[i]);
return 0;
}
线段树 C - Connected Components? CodeForces - 920E的更多相关文章
- Connected Components? Codeforces - 920E || 洛谷 P3452 &&bzoj1098 [POI2007]BIU-Offices
https://codeforces.com/contest/920/problem/E https://www.luogu.org/problemnew/show/P3452 https://www ...
- Connected Components? CodeForces - 920E (bfs)
大意:给定无向图, 求补图的连通块数 bfs模拟即可, 这里用了map存图, set维护未划分的点集, 复杂度$O(nlog^2n)$, 用链表的话可以$O(n)$ #include <iost ...
- 线段树+矩阵快速幂 Codeforces Round #373 (Div. 2) E
http://codeforces.com/contest/719/problem/E 题目大意:给你一串数组a,a[i]表示第i个斐波那契数列,有如下操作 ①对[l,r]区间+一个val ②求出[l ...
- 数据结构(线段树):Educational Codeforces Round 6 620E. New Year Tree
E. New Year Tree time limit per test 3 seconds memory limit per test 256 megabytes input standard in ...
- codeforces 1217E E. Sum Queries? (线段树
codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...
- 线段树详解 (原理,实现与应用)(转载自:http://blog.csdn.net/zearot/article/details/48299459)
原文地址:http://blog.csdn.net/zearot/article/details/48299459(如有侵权,请联系博主,立即删除.) 线段树详解 By 岩之痕 目录: 一:综述 ...
- Codeforces 1270H - Number of Components(线段树)
Codeforces 题目传送门 & 洛谷题目传送门 首先需发现一个性质,那就是每一个连通块所对应的是一个区间.换句话说 \(\forall l<r\),若 \(l,r\) 在同一连通块 ...
- Codeforces VK CUP 2015 D. Closest Equals(线段树+扫描线)
题目链接:http://codeforces.com/contest/522/problem/D 题目大意: 给你一个长度为n的序列,然后有m次查询,每次查询输入一个区间[li,lj],对于每一个查 ...
- Educational Codeforces Round 6 E. New Year Tree dfs+线段树
题目链接:http://codeforces.com/contest/620/problem/E E. New Year Tree time limit per test 3 seconds memo ...
随机推荐
- Java入门系列之线程池ThreadPoolExecutor原理分析思考(十五)
前言 关于线程池原理分析请参看<http://objcoding.com/2019/04/25/threadpool-running/>,建议对原理不太了解的童鞋先看下此文然后再来看本文, ...
- 使用docker-compose编写常规的lnmp容器,pdo连接mysql失败。
问题的核心是yii2 是通过pdo的方式去连接数据的.但是我们通过容器去搭建lnmp环境时,nginx , php , mysql 这三个服务是独立的三个容器,彼此隔离.所以在yii2中连接mysql ...
- Java学习成长第一集
由于最近所在项目组的项目临近结尾,所以有时间对自己近来的学习做个总结.不得不说,程序员不学习就退步这句话是真的很让人信服!自己入行将近一年的时间,所学的就是Java开发的专业,很羞愧的是现在的自己能力 ...
- Go语言讲解深拷贝与浅拷贝
我们在开发中会经常的把一个变量复制给另一个变量,那么这个过程,可能是深浅拷贝,那么今天帮大家区分一下这两个拷贝的区别和具体的区别. 一.概念 1.深拷贝(Deep Copy): 拷贝的是数据本身,创造 ...
- 中国剩余定理(CRT)
只看懂了CRT,EXCRT待补.... 心得:记不得这是第几次翻CRT了,每次都有迷迷糊糊的.. 中国剩余定理用来求解类似这样的方程组: 求解的过程中用到了同余方程. x=a1( mod x1) x= ...
- 在数组添加元素时报错:IndexError: list index out of range
今天第一次发随笔还有许多不足之处,欢迎评论!!! 最近在写一个成语接龙的小游戏,结果在数组添加元素时报错:IndexError: list index out of range 源码: import ...
- [YII2] COOKIE的操作使用
PHPcookie的设置 setcookie('username',$data['username'],time()+3600*24*7); YII2cookie的设置 $cookies = Yii: ...
- 关于对vue-router的优化(详尽版)
这两天总结了关于vue-router优化的几点技法,做个笔记 在基于vue的移动端app中,通过vue-router可以便捷的进入某一路由或回退到上一路由,但是若不对vue-router做相关优化处理 ...
- Java 自动拆箱 装箱 包装类的缓存问题--结合源码分析
都0202 了 java 1.8 已经是主流 自动装箱 .拆箱已经很普遍使用了,那么有时候是不是会遇到坑呢? 我们先来看一段代码: public class TestWraperClass { pub ...
- 安装和使用redis
我现在只是在window上使用redis在其他平台上暂时没有操作过,如果你有其他好的意见欢迎提出来! 安装redis具体可查看:http://www.runoob.com/redis/redis-in ...