import numpy as np

np.array([1,2,3])
array([1, 2, 3])
np.array([[1,2,3],[4,5,6]])
array([[1, 2, 3],
[4, 5, 6]])
arr = np.array([[1,2,3],[4,5,6],[7,8,9]])
arr
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

把它给看成一个矩阵,或者看成一个ndarray数组的话,我们去获取他的形状.

arr = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
arr.shape
(4, 3)
arr.shape[0]
print(arr.shape[0])
20
arr.shape[1]
3

切割矩阵

arr = np.array([1,2,3])
arr
arr[:]
array([1, 2, 3])
arr = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
arr
array([[ 1,  2,  3],
[ 4, 5, 6],
[ 7, 8, 9],
[10, 11, 12]])
arr[:,:]
array([[ 1,  2,  3],
[ 4, 5, 6],
[ 7, 8, 9],
[10, 11, 12]])
arr[1:2,:]
array([[4, 5, 6]])
arr[1:2,1:2]
array([[5]])
arr[1:2,1:10000]
array([[5, 6]])
arr[1:2,[1,2]]
array([[5, 6]])
arr[1:2,(1,2)]
array([[5, 6]])

矩阵元素的替换

arr = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
arr
array([[ 1,  2,  3],
[ 4, 5, 6],
[ 7, 8, 9],
[10, 11, 12]])
l = [4,5,6]
l[1] = 0
l
[4, 0, 6]

# arr[1:2,:] = 0
# arr
arr1 = arr.copy()
arr1[1:2,:] = 0
arr1
array([[ 1,  2,  3],
[ 0, 0, 0],
[ 7, 8, 9],
[10, 11, 12]])
arr
array([[ 1,  2,  3],
[ 4, 5, 6],
[ 7, 8, 9],
[10, 11, 12]])
arr[(1,),(1,)] = 0
arr
array([[ 1,  2,  3],
[ 4, 0, 6],
[ 7, 8, 9],
[10, 11, 12]])

矩阵的合并

l1 = [1,2,3]
l2 = [4,5,6]
# l1.extend(l2)
# l1
l1+l2
[1, 2, 3, 4, 5, 6]

arr1 = np.array([[1, 2], [3, 4], [5, 6]])
arr1
array([[1, 2],
[3, 4],
[5, 6]])
arr2 = np.array([[7, 8,8], [9, 10,9], [11, 12,10]])
arr2
array([[ 7,  8,  8],
[ 9, 10, 9],
[11, 12, 10]])
np.hstack((arr1,arr2)) # h=horizontal水平的
array([[ 1,  2,  7,  8,  8],
[ 3, 4, 9, 10, 9],
[ 5, 6, 11, 12, 10]])
np.hstack([arr1,arr2])
array([[ 1,  2,  7,  8,  8],
[ 3, 4, 9, 10, 9],
[ 5, 6, 11, 12, 10]])
np.vstack((arr1,arr2)) # v=vertical垂直的
---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

<ipython-input-53-4122b6300983> in <module>
----> 1 np.vstack((arr1,arr2)) # v=vertical垂直的
d:\python36\lib\site-packages\numpy\core\shape_base.py in vstack(tup)
281 """
282 _warn_for_nonsequence(tup)
--> 283 return _nx.concatenate([atleast_2d(_m) for _m in tup], 0)
284
285
ValueError: all the input array dimensions except for the concatenation axis must match exactly

arr1 = np.array([[1, 2,3], [3, 4,4], [5, 6,4]])
arr1
array([[1, 2, 3],
[3, 4, 4],
[5, 6, 4]])
arr2 = np.array([[7, 8,8], [9, 10,9], [11, 12,10]])
arr2
array([[ 7,  8,  8],
[ 9, 10, 9],
[11, 12, 10]])
np.vstack((arr1,arr2)) # v=vertical垂直的
array([[ 1,  2,  3],
[ 3, 4, 4],
[ 5, 6, 4],
[ 7, 8, 8],
[ 9, 10, 9],
[11, 12, 10]])

通过函数创建矩阵

range(10)
range(0, 10)

list(range(5,10,2))
[5, 7, 9]

np.arange(10,20,2)
array([10, 12, 14, 16, 18])

# 取头也取尾
arr = np.linspace(1,10,20)
arr
array([ 1.        ,  1.47368421,  1.94736842,  2.42105263,  2.89473684,
3.36842105, 3.84210526, 4.31578947, 4.78947368, 5.26315789,
5.73684211, 6.21052632, 6.68421053, 7.15789474, 7.63157895,
8.10526316, 8.57894737, 9.05263158, 9.52631579, 10. ])
len(arr)
20

zeros/ones/empty

np.zeros((3,2)) # zeros零
array([[0., 0.],
[0., 0.],
[0., 0.]])
np.ones((3,2)) # ones一
array([[1., 1.],
[1., 1.],
[1., 1.]])
np.empty((3,3)) # 随机元素的矩阵
array([[0.00000000e+000, 0.00000000e+000, 0.00000000e+000],
[0.00000000e+000, 0.00000000e+000, 7.37145944e-321],
[8.70018274e-313, 2.22507386e-306, 3.91786943e-317]])
np.eye(4) # I=1
array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])
np.eye(7)
array([[1., 0., 0., 0., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 1., 0.],
[0., 0., 0., 0., 0., 0., 1.]])

矩阵的运算

列表无法进行+-*/运算,但是矩阵是可以的.

l1 =[1,3,4]
l1*2
[1, 3, 4, 1, 3, 4]

l1+l1
[1, 3, 4, 1, 3, 4]

arr2 = np.array([[7, 8,8], [9, 10,9], [11, 12,10]])
arr2
array([[ 7,  8,  8],
[ 9, 10, 9],
[11, 12, 10]])
arr2*2
array([[14, 16, 16],
[18, 20, 18],
[22, 24, 20]])
arr2/2
array([[3.5, 4. , 4. ],
[4.5, 5. , 4.5],
[5.5, 6. , 5. ]])
arr2%2
array([[1, 0, 0],
[1, 0, 1],
[1, 0, 0]], dtype=int32)
np.sin(arr2)
array([[ 0.6569866 ,  0.98935825,  0.98935825],
[ 0.41211849, -0.54402111, 0.41211849],
[-0.99999021, -0.53657292, -0.54402111]])
矩阵函数 详解
np.sin(arr) 对矩阵arr中每个元素取正弦,$sin(x)$
np.cos(arr) 对矩阵arr中每个元素取余弦,$cos(x)$
np.tan(arr) 对矩阵arr中每个元素取正切,$tan(x)$
np.arcsin(arr) 对矩阵arr中每个元素取反正弦,$arcsin(x)$
np.arccos(arr) 对矩阵arr中每个元素取反余弦,$arccos(x)$
np.arctan(arr) 对矩阵arr中每个元素取反正切,$arctan(x)$
np.exp(arr) 对矩阵arr中每个元素取指数函数,$e^x$
np.sqrt(arr) 对矩阵arr中每个元素开根号$\sqrt{x}$
np.sqrt(arr2)
array([[2.64575131, 2.82842712, 2.82842712],
[3. , 3.16227766, 3. ],
[3.31662479, 3.46410162, 3.16227766]])

矩阵的点乘

arr1 = np.array([[1, 2,3], [3, 4,4], [5, 6,4]])
arr1
array([[1, 2, 3],
[3, 4, 4],
[5, 6, 4]])
arr2 = np.array([[1, 2,3], [3, 4,4], [5, 6,4]])
arr2
array([[1, 2, 3],
[3, 4, 4],
[5, 6, 4]])
arr1.dot(arr2)
array([[22, 28, 23],
[35, 46, 41],
[43, 58, 55]])

矩阵的转置

arr2 = np.array([[1, 2,3]])
arr2
array([[1, 2, 3]])

arr2.T
array([[1],
[2],
[3]])

矩阵的逆

$AA{-1}=I=A{-1}A$

arr2 = np.array([[1, 2,3],[4,5,6],[7,8,9]])
arr2
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
np.linalg.inv(arr2)
---------------------------------------------------------------------------

LinAlgError                               Traceback (most recent call last)

<ipython-input-104-12b0a2fff5c3> in <module>
----> 1 np.linalg.inv(arr2)
d:\python36\lib\site-packages\numpy\linalg\linalg.py in inv(a)
549 signature = 'D->D' if isComplexType(t) else 'd->d'
550 extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
--> 551 ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj)
552 return wrap(ainv.astype(result_t, copy=False))
553
d:\python36\lib\site-packages\numpy\linalg\linalg.py in _raise_linalgerror_singular(err, flag)
95
96 def _raise_linalgerror_singular(err, flag):
---> 97 raise LinAlgError("Singular matrix")
98
99 def _raise_linalgerror_nonposdef(err, flag):
LinAlgError: Singular matrix

其他的用法

arr2 = np.array([[1, 2,3],[4,5,6],[7,8,9]])
arr2
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
arr2.min()
1

arr2.max()
9

arr2.mean()
5.0

arr2.var()
6.666666666666667

函数名称 函数功能 参数说明
rand($d_0, d_1, \cdots , d_n$) 产生均匀分布的随机数 $d_n$为第n维数据的维度
randn($d_0, d_1, \cdots , d_n$) 产生标准正态分布随机数 $d_n$为第n维数据的维度
randint(low[, high, size, dtype]) 产生随机整数 low:最小值;high:最大值;size:数据个数
random_sample([size]) 在$[0,1)$内产生随机数 size为随机数的shape,可以为元祖或者列表
choice(a[, size]) 从arr中随机选择指定数据 arr为1维数组;size为数据形状
np.random.randint(1,10,(3,3))
array([[8, 5, 6],
[7, 5, 3],
[6, 4, 6]])
np.random.randn(3,2)
array([[ 1.49020068e+00, -5.66224782e-01],
[-1.26022246e+00, 1.41537705e+00],
[-1.99081209e-03, 2.05245204e+00]])

numpy模块介绍的更多相关文章

  1. Python 数据处理扩展包: numpy 和 pandas 模块介绍

    一.numpy模块 NumPy(Numeric Python)模块是Python的一种开源的数值计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list str ...

  2. 开发技术--Numpy模块

    开发|Numpy模块 Numpy模块是数据分析基础包,所以还是很重要的,耐心去体会Numpy这个工具可以做什么,我将从源码与 地产呢个实现方式说起,祝大家阅读愉快! Numpy模块提供了两个重要对象: ...

  3. 数据分析01 /numpy模块

    数据分析01 /数据分析之numpy模块 目录 数据分析01 /数据分析之numpy模块 1. numpy简介 2. numpy的创建 3. numpy的方法 4. numpy的常用属性 5. num ...

  4. numpy模块(详解)

    重点 索引和切片 级联 聚合操作 统计操作 矩阵 什么是数据分析 是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律 数据分析是用适当的方法对收集来的大量数据进行分析,帮助 ...

  5. webkit模块介绍

    一.Webkit模块   用到的第三方库如下:   cairo 一个2D绘图库 casqt Unicode处理用的库,从QT中抽取部分代码形成的 expat 一个XML SAX解析器的库 freety ...

  6. 【液晶模块系列基础视频】1.2.iM_RGB模块介绍

    [液晶模块系列基础视频]1.2.iM_RGB模块介绍(上) [液晶模块系列基础视频]1.2.iM_RGB模块介绍(下) ============================== 技术论坛:http ...

  7. 【液晶模块系列基础视频】1.1.iHMI43模块介绍

    [液晶模块系列基础视频]1.1.iHMI43模块介绍(上) [液晶模块系列基础视频]1.1.iHMI43模块介绍(下) ============================== 技术论坛:http ...

  8. CSS3_概述、发展史、模块介绍、与浏览器之间的关系

    一.CSS3概述和CSS3的发展史: 1.css3概述: CSS3是CSS2的升级版本,3只是版本号,它在CSS2.1的基础上增加了很多强大的新功能.    目前主流浏览器chrome.safari. ...

  9. 嵌入式系统图形库GUI核心模块介绍

    本文转载自:http://blog.csdn.net/xteda/article/details/6575278 (作者 冯青华 信庭嵌入式工作室(www.xteda.com)- CEO Blog:h ...

随机推荐

  1. Mysql插入数据里有中文字符出现Incorrect string value的错误

    问题:Mysql插入数据里有中文字符出现Incorrect string value的错误   描述:CMD里直接敲代码插入数据   提示的部分截取为:ERROR 1366 (HY000): Inco ...

  2. 吴裕雄--天生自然MySQL学习笔记:MySQL WHERE 子句

    MySQL 表中使用 SQL SELECT 语句来读取数据. 如需有条件地从表中选取数据,可将 WHERE 子句添加到 SELECT 语句中. 语法 以下是 SQL SELECT 语句使用 WHERE ...

  3. 吴裕雄--天生自然MySQL学习笔记:MySQL 查询数据

    MySQL 数据库使用SQL SELECT语句来查询数据. 可以通过 mysql> 命令提示窗口中在数据库中查询数据,或者通过PHP脚本来查询数据. 语法 以下为在MySQL数据库中查询数据通用 ...

  4. PAT Advanced 1053 Path of Equal Weight (30) [树的遍历]

    题目 Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight ...

  5. LeetCode No.166,167,168

    No.166 FractionToDecimal 分数到小数 题目 给定两个整数,分别表示分数的分子 numerator 和分母 denominator,以字符串形式返回小数. 如果小数部分为循环小数 ...

  6. idea使用eclipse风格

    说明,只是代码编辑区采用eclipse风格,其他用的是idea的IntelliJ(白色风格) 1.下载文件 2.配置

  7. Pmw大控件(二)

    Pmw大控件英文名Pmw Python megawidgets 官方参考文档:Pmw 1.3 Python megawidgets 一,如何使用Pmw大控件 下面以创建一个计数器(Counter)为例 ...

  8. tf调试函数

    Tensorflow之调试(Debug)及打印变量   参考资料:https://wookayin.github.io/tensorflow-talk-debugging 几种常用方法: 1.通过Se ...

  9. TX2Ubuntu16.04上安装 kinectV2

    本文参考   https://www.ncnynl.com/archives/201706/1780.html 参考    https://blog.csdn.net/qq_33835307/arti ...

  10. 将hello程序作为驱动程序编译进系统内核

    0x00开始 恩,可能是我比较愚钝,一个内核编译搞了一天,各种问题,各种bug,几度无奈,也是因为我突发奇想,并没有按照原来的那种操作,我直接把helloworld程序放到内核模块中编译成了一个驱动程 ...