1、介绍

  KNN是k nearest neighbor 的简称,即k最邻近,就是找k个最近的实例投票决定新实例的类标。KNN是一种基于实例的学习算法,它不同于贝叶斯、决策树等算法,KNN不需要训练,当有新的实例出现时,直接在训练数据集中找k个最近的实例,把这个新的实例分配给这k个训练实例中实例数最多类。KNN也成为懒惰学习,它不需要训练过程,在类标边界比较整齐的情况下分类的准确率很高。KNN算法需要人为决定K的取值,即找几个最近的实例,k值不同,分类结果的结果也会不同。

2、举例

  看如下图的训练数据集的分布,该数据集分为3类(在图中以三种不同的颜色表示),现在出现一个待分类的新实例(图中绿色圆点),假设我们的K=3,即找3个最近的实例,这里的定义的距离为欧氏距离,这样找据该待分类实例最近的三个实例就是以绿点为中心画圆,确定一个最小的半径,使这个圆包含K个点。

  

  如图所示,可以看到红圈包含的三个点中,类别2中有三个,类别3有一个,而类别1一个也没有,根据少数服从多数的原理投票,这个绿色的新实例应属于2类。

3、K值的选取。

  之前说过,K值的选取,将会影响分类的结果,那么K值该取多少合理。我们继续上面提到的分类过程,现在我们把K设置为为7,如下图所示:

  

  可以看到当k=7时,最近的7个点中1类有三个,2类和3类都有两个,这时绿色的新实例应该分给1类,这与K=5时的分类结果不同。

  K值的选取没有一个绝对的标准,但可以想象,K取太大并不能提高正确率,而且求K个最近的邻居是一个O(K*N)复杂度的算法,k太大,算法效率会更低。

  虽然说K值的选取,会影响结果,有人会认为这个算法不稳定,其实不然,这种影响并不是很大,因为只有这种影响只是在类别边界上产生影响,而在类中心附近的实例影响很小,看下图,对于这样的一个新实例,k=3,k=5,k=11结果都是一样的。

  

  最后还有注意,在数据集不均衡的情况下,可能需要按各类的比例决定投票,这样小类的正确率才不会过低。

参考链接:http://www.cnblogs.com/fengfenggirl/archive/2013/05/27/knn.html

分类算法之KNN分类的更多相关文章

  1. 【笔记】二分类算法解决多分类问题之OvO与OvR

    OvO与OvR 前文书道,逻辑回归只能解决二分类问题,不过,可以对其进行改进,使其同样可以用于多分类问题,其改造方式可以对多种算法(几乎全部二分类算法)进行改造,其有两种,简写为OvO与OvR OvR ...

  2. 数据挖掘之分类算法---knn算法(有matlab例子)

    knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法.注意,不是聚类算法.所以这种分类算法 必然包括了训练过程. 然而和一般性的分类算法不同,knn算法是一种懒 ...

  3. kNN算法:K最近邻(kNN,k-NearestNeighbor)分类算法

    一.KNN算法概述 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它 ...

  4. 数据挖掘之分类算法---knn算法(有matlab样例)

    knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法. 注意,不是聚类算法.所以这样的分类算法必定包含了训练过程. 然而和一般性的分类算法不同,knn算法是一种 ...

  5. 用Python开始机器学习(2:决策树分类算法)

    http://blog.csdn.net/lsldd/article/details/41223147 从这一章开始进入正式的算法学习. 首先我们学习经典而有效的分类算法:决策树分类算法. 1.决策树 ...

  6. Mahout 分类算法

    实验简介 本次课程学习了Mahout 的 Bayes 分类算法. 一.实验环境说明 1. 环境登录 无需密码自动登录,系统用户名 shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu ...

  7. Spark MLlib架构解析(含分类算法、回归算法、聚类算法和协同过滤)

    Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基 ...

  8. 机器学习算法之——KNN、Kmeans

    一.Kmeans算法 kmeans算法又名k均值算法.其算法思想大致为:先从样本集中随机选取 kk 个样本作为簇中心,并计算所有样本与这 kk 个“簇中心”的距离,对于每一个样本,将其划分到与其距离最 ...

  9. Spark Mllib里如何对决策树二元分类和决策树多元分类的分类数目numClasses控制(图文详解)

    不多说,直接上干货! 决策树二元分类的分类数目numClasses控制 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第13章 使用决策树二元分类算法来预测分类Stumble ...

随机推荐

  1. P3241 [HNOI2015]开店

    题解:动态点分治 建立点分树 每个点维护点分树子树内节点到这个节点和父亲节点距离的前缀和 二分查找锁定合法区间 对每个祖先分治中心查询路径和然后减去不合法子树内的路径和 注意:求大量LCA时用树剖 不 ...

  2. Leetcode第1题:两数之和

    给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的 两个 整数.你可以假设每种输入只会对应一个答案.但是,你不能重复利用这个数组中同样的元素.示例:给定 nums ...

  3. C/C++源程序到可执行程序的过程

    源程序.cpp  预处理得到 预处理文件.i   编译得到 汇编文件.S    汇编得到 目标文件.o     链接得到 可执行文件 例子:main.cpp  fun.cpp fun.h #inclu ...

  4. 洛谷 P2722 总分 Score Inflation && 完全背包模板

    题目传送门 解题思路: 补一个完全背包的模板,跟01背包十分相似,唯一不同在于重量j的枚举顺序. AC代码: #include<cstdio> #include<iostream&g ...

  5. SeetaFaceEngine系列1:Face Detection编译和使用

    SeetaFace,根据GitHub上的介绍,就是一个开源的人脸检测.矫正和识别的开源库,是采用C++来编写的,并且是在CPU上执行的,没有用到GPU,但是可以用SSE或者OpenMP来加速.整个库分 ...

  6. 4. 现代 javascript class 专题 和 异步专题

    class 专题 定义 class //es5 类的定义  属性定义在 function 上, 方法定义在原型链上 function foobar(){ this.foo_ = 'foo'; this ...

  7. h5-localStorage储存的使用

    <!-- localStorage的使用: 1.存储的内容大概20mb 2.不同浏览器不能共享数据,但是在同意浏览器的不同窗口中可以共享数据 3.永久生效,他的数据是储存在硬盘上,并不会随着页面 ...

  8. 损失函数coding

    损失函数(Loss Function)和成本函数(Cost Function)之间有什么区别? 在此强调这一点,尽管成本函数和损失函数是同义词并且可以互换使用,但它们是不同的. 损失函数用于单个训练样 ...

  9. MVC的异步模式

    [小家Spring]高性能关键技术之---体验Spring MVC的异步模式(Callable.WebAsyncTask.DeferredResult) 基础使用篇 https://blog.csdn ...

  10. ubuntu19.10安装cuda-10.1

    ubuntu19.10安装cuda-10.1 1.安装N卡驱动: 打开ubuntu的软件和更新,设置N卡驱动 2.查看ubuntu显卡驱动 nvidia-smi 显示: Sun Feb 23 06:4 ...