[图中找环] Codeforces 659E New Reform
1 second
256 megabytes
standard input
standard output
Berland has n cities connected by m bidirectional roads. No road connects a city to itself, and each pair of cities is connected by no more than one road. It is not guaranteed that you can get from any city to any other one, using only the existing roads.
The President of Berland decided to make changes to the road system and instructed the Ministry of Transport to make this reform. Now, each road should be unidirectional (only lead from one city to another).
In order not to cause great resentment among residents, the reform needs to be conducted so that there can be as few separate cities as possible. A city is considered separate, if no road leads into it, while it is allowed to have roads leading from this city.
Help the Ministry of Transport to find the minimum possible number of separate cities after the reform.
The first line of the input contains two positive integers, n and m — the number of the cities and the number of roads in Berland (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000).
Next m lines contain the descriptions of the roads: the i-th road is determined by two distinct integers xi, yi (1 ≤ xi, yi ≤ n, xi ≠ yi), where xi and yi are the numbers of the cities connected by the i-th road.
It is guaranteed that there is no more than one road between each pair of cities, but it is not guaranteed that from any city you can get to any other one, using only roads.
Print a single integer — the minimum number of separated cities after the reform.
4 3
2 1
1 3
4 3
1
5 5
2 1
1 3
2 3
2 5
4 3
0
6 5
1 2
2 3
4 5
4 6
5 6
1
In the first sample the following road orientation is allowed: ,
,
.
The second sample: ,
,
,
,
.
The third sample: ,
,
,
,
.
题意:有n个点m条边,一开始是双向边,现在要改为单边,问现在入度为0的点最少有多少个
思路:如果没环就必定会出现一个城市入度为0,所以就是如何找环,一种是dfs看是否有节点被重复访问,另一种是并查集看祖先是否是它本身且是否和其他环相连
#include<bits/stdc++.h>
using namespace std;
const int amn=1e5+;
vector<int> v[amn];
bool idx[amn];
int ans,f;
void dfs(int x,int pre){
if(idx[x]){f=;return;}
idx[x]=;
for(int i=;i<v[x].size();i++){
int u=v[x][i];
if(u==pre)continue;
dfs(u,x);
}
}
int main(){
int n,m,u,t,len,le;
ios::sync_with_stdio();
cin>>n>>m;
for(int i=;i<m;i++){
cin>>u>>t;
v[u].push_back(t);
v[t].push_back(u);
}
for(int i=;i<=n;i++){
if(!idx[i]){
f=;
dfs(i,);
if(!f)ans++;
}
}
printf("%d\n",ans);
}
dfs找环
#include<bits/stdc++.h>
using namespace std;
const int amn=1e5+;
int pre[amn];
bool idx[amn];
int ans;
int fd(int x){
return x==pre[x]?x:pre[x]=fd(pre[x]);
}
int main(){
int n,m,u,v,len,le;
ios::sync_with_stdio();
cin>>n>>m;
for(int i=;i<=n;i++)pre[i]=i;
for(int i=;i<m;i++){
cin>>u>>v;
int fu=fd(u),fv=fd(v);
if(fu!=fv){
pre[fu]=fv;
if(idx[fu]||idx[fv]||idx[u]||idx[v])idx[fu]=idx[fv]=idx[u]=idx[v]=;
}
else idx[fu]=idx[fv]=idx[u]=idx[v]=;
}
for(int i=;i<=n;i++)if(fd(i)==i&&!idx[i])ans++;
printf("%d\n",ans);
}
并查集找环
[图中找环] Codeforces 659E New Reform的更多相关文章
- [hdu5348]图上找环,删环
http://acm.hdu.edu.cn/showproblem.php?pid=5348 题意:给一个无向图,现在要将其变成有向图,使得每一个顶点的|出度-入度|<=1 思路:分为两步,(1 ...
- CodeForces 659E New Reform (图的遍历判环)
Description Berland has n cities connected by m bidirectional roads. No road connects a city to itse ...
- Codeforces 659E New Reform【DFS】
题目链接: http://codeforces.com/problemset/problem/659/E 题意: 给定n个点和m条双向边,将双向边改为单向边,问无法到达的顶点最少有多少个? 分析: 无 ...
- 如何判断图中存环(正&负)
1.正环 用 SPFA不断的进行松弛操作,发现当前金额可以比本身大就更新,同时记录更新次数.如果更新次数超过n次,说明存在”正“环. 2.负环 这里先说明下负环.(求最短距离的时候) 在我们用SPFA ...
- CodeForces 659E New Reform
题意:给你一个无向图,如今要求你把边改成有向的. 使得入度为0的点最少,输出有多少个点入度为0 思路:脑补一波结论.假设有环的话显然没有点入度为0,其余则至少有一个点入度为0,然后就DFS一波就能够了 ...
- python 图中找目标并截图
import numpy as npdef sjjt(xha,sjh,beitu,jl,xx,yy): #检查目标,并将目标指定范围内截图 pull_screenshot(xha,sjh,xx) #p ...
- codeforces 659E . New Reform 强连通
题目链接 对于每一个联通块, 如果有一个强连通分量, 那么这个联通块对答案的贡献就是0. 否则对答案贡献是1. #include <iostream> #include <vecto ...
- HDU4514(非连通图的环判断与图中最长链)
题目:设计风景线 题意:给定一个无向图,图可能是非连通的,如果图中存在环,就输出YES,否则就输出图中最长链的长度. 分析:首先我们得考虑这是一个无向图,而且有可能是非连通的,那么就不能直接像求树那样 ...
- 图论 公约数 找环和链 BZOJ [NOI2008 假面舞会]
BZOJ 1064: [Noi2008]假面舞会 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1655 Solved: 798[Submit][S ...
随机推荐
- Python的Flask框架开发RESTful API
web框架选择 Django,流行但是笨重,还麻烦,人生苦短,肯定不选 web.py,轻量,但据说作者仙逝无人维护,好吧,先pass tornado,据说倡导自己造轮子,虽然是facebook开源的吧 ...
- Gnu pgp加密解密
在生成密钥的时候,无法生成足够多的随机数,提示“ Not enough random bytes available. Please do some other work to givethe OS ...
- ES6学习总结(五)
与其说是对象合并,还不如说是JavaScript中对象属性的复制和转移,将多个对象中的属性合并到一个对象中 12345678 var person = { name : 'John', age : 2 ...
- 6,HDFS HA
目录 HDFS HA 一.HA(High Availability)的使用原因 二.HA的同步 三.HA的自动容灾 HDFS HA 一.HA(High Availability)的使用原因 1.1 在 ...
- 高性能内存队列Disruptor--原理分析
1.起源 Disruptor最初由lmax.com开发,2010年在Qcon公开发表,并于2011年开源,其官网定义为:"High Performance Inter-Thread ...
- Docker部署LAMP项目
前言 之前我们学习了如何在Linux部署LAMP项目,今天我们来学习一下如何在Docker下部署LAMP项项目吧! Docker 要求 CentOS 系统的内核版本高于 3.10 ,查看本页面的前提条 ...
- 计算机思维的逻辑基础是什么? & 计算思维
l 计算机思维的逻辑基础: 计算机思维是指人们操作计算机时,计算机行使特定功能的运作方式. 逻辑基础则是指支撑事物运作的基本法则. 因而,计算机思维的逻辑基础可以理解为,计算机在行使特定功能时,其运 ...
- 关于使用layui中的tree的一个坑
最近几天,因为项目需要,所以自学了下layui,在使用之前就对其比较感兴趣,毕竟封装的东西也不错(个人见解),在接触到layui之后,现在有个需要就是将部门做成tree的样子,开始觉得不怎么难,毕竟都 ...
- JAVA 16bit CRC_CCITT
JAVA 16bit CRC_CCITT public class CRC_CCITT { static int CRC16_ccitt_table[] = { 0x0000, 0x1189, 0x2 ...
- JavaScript的数组(一)
在JavaScript中,对象,数组,函数是最最常用的东东了,写完了对象和函数,最后来说说数组吧,提到数组,就只能想到,map,forEach啊,pop,push啊,当真是没有一点点的积累了?这么多年 ...