kaldi通用底层矩阵运算库——CUDA
cudamatrix/cublas-wrappers.h
该头文件对cuBLAS的接口进行了简单的封装(函数名的简化和部分kaldi函数的封装)。
比如
cublasSgemm_v2封装为cublas_gemm
cublas_copy_kaldi_fd和cublas_copy_kaldi_df封装为cublas_copy
cudamatrix/cu-kernels.{h,cu}
以cuda_add_col_sum_mat函数为例
对Kaldi cuda kernel或cublas进行了简单的封装(针对不同精度浮点型)
|
cudamatrix/cu-kernels.h inline void cuda_add_col_sum_mat(int Gr, int Bl, double* result, const double* mat, const MatrixDim d, const double alpha, const double beta) { cudaD_add_col_sum_mat(Gr, Bl, result, mat, d, alpha, beta); } inline void cuda_add_col_sum_mat(int Gr, int Bl, float* result, const float* mat, const MatrixDim d, const float alpha, const float beta) { cudaF_add_col_sum_mat(Gr, Bl, result, mat, d, alpha, beta); } //... } |
kernel的定义
|
cudamatrix/cu-kernels.cu // Reduce a matrix 'mat' to a column vector 'result' template<EnumTransformReduce TransReduceType, typename Real> __global__ static void _transform_reduce_mat_cols( Real *result, const Real *mat, const MatrixDim d, const TransReduceOp<TransReduceType, Real> op) { __shared__ Real sdata[CU1DBLOCK]; const int tid = threadIdx.x; const int i = blockIdx.x; const int row_start = i * d.stride; Real tdata = op.InitValue(); for (int j = tid; j < d.cols; j += CU1DBLOCK) { tdata = op.Reduce(tdata, op.Transform(mat[row_start + j])); } sdata[tid] = tdata; __syncthreads(); // Tree reduce # pragma unroll for (int shift = CU1DBLOCK / 2; shift > warpSize; shift >>= 1) { if (tid < shift) sdata[tid] = op.Reduce(sdata[tid], sdata[tid + shift]); __syncthreads(); } // Reduce last warp. Threads implicitly synchronized within a warp. if (tid < warpSize) { for (int shift = warpSize; shift > 0; shift >>= 1) sdata[tid] = op.Reduce(sdata[tid], sdata[tid + shift]); } // Output to vector result. if (tid == 0) { result[i] = op.PostReduce(sdata[0], result[i]); } } void cudaD_add_col_sum_mat(int Gr, int Bl, double* result, const double* mat, const MatrixDim d, const double alpha, const double beta) { _transform_reduce_mat_cols<<<Gr, Bl>>>(result, mat, d, TransReduceOp<SUMAB, double>(alpha, beta)); } |
cudamatrix/cu-vector.h
与matrix/kaldi-vector.h类似的,该头文件声明了几个向量类。与之不同的是,但其运算的实现基于CUDA或CBLAS。
class CuVectorBase
Cuda向量抽象类。该类对基础运算与内存优化进行了封装,只提供向量运算。不涉及尺寸缩放和构造函数。
尺寸缩放和构造函数由派生类CuVector和CuSubVector负责。
向量初始化
void SetZero();
向量信息
MatrixIndexT Dim() const { return dim_; }
向量的读取与转换
inline Real* Data() { return data_; }
inline Real operator() (MatrixIndexT i) const
CuSubVector<Real> Range(const MatrixIndexT o, const MatrixIndexT l)
向量的拷贝函数
void CopyFromVec(const CuVectorBase<Real> &v);
向量的运算
void ApplyLog();
void AddVec(const Real alpha, const CuVectorBase<OtherReal> &v, Real beta = 1.0);
//*this += alpha * M [or M^T]
//linear_params_.AddMat(alpha, other->linear_params_);
//linear_params_ += alpha * other->linear_params_
void AddMat ( const Real alpha,
const MatrixBase< Real > & M,
MatrixTransposeType transA = kNoTrans
)

//*this = alpha * diag(M * M^T) + beta * *this
|
diag(M M^T)+beta ** M (1 2 3) (4 5 6) (7 8 9) (1 4 7) (2 5 8) (3 6 9) (1^2+2^2+3^2, *, *) (*, 4^2+5^2+6^2, *) (*, *, 7^2+8^2+9^2) diag=() |
void CuVectorBase<Real>::AddDiagMat2(Real alpha, const CuMatrixBase<Real> &M,
MatrixTransposeType trans, Real beta) {
//*this = alpha * diag(M * M^T) + beta * *this
this->AddDiagMatMat(alpha, M, trans, M, other_trans, beta);
}
//*this = alpha * diag(M * N^T) + beta * *this
void CuVectorBase<Real>::AddDiagMatMat(Real alpha, const CuMatrixBase<Real> &M,
MatrixTransposeType transM,
const CuMatrixBase<Real> &N,
MatrixTransposeType transN, Real beta) {
// v = alpha * diag(M * N^T) + beta * v
static void _add_diag_mat_mat_MNT(const Real alpha, const Real* M,
const MatrixDim dim_M, const Real* N,
const int stride_N, const Real beta,
Real* v)
//data_ = alpha * diag(M.Data() * N.Data()^T) + beta * data_
cuda_add_diag_mat_mat_MNT(dimGrid, dimBlock, alpha, M.Data(), M.Dim(),
N.Data(), N.Stride(), beta, data_);
class CuVector: public CuVectorBase<Real>
该类表示普通Cuda向量,并实现尺寸缩放和一般的构造函数。
多种构造函数
explicit CuVector(const CuVector<Real> &v) : CuVectorBase<Real>() {
Resize(v.Dim(), kUndefined);
this->CopyFromVec(v);
}
template<typename OtherReal>
explicit CuVector(const CuVectorBase<OtherReal> &v) : CuVectorBase<Real>() {
Resize(v.Dim(), kUndefined);
this->CopyFromVec(v);
}
template<typename OtherReal>
explicit CuVector(const VectorBase<OtherReal> &v) : CuVectorBase<Real>() {
Resize(v.Dim(), kUndefined);
this->CopyFromVec(Vector<Real>(v));
}
重载赋值运算符
CuVector<Real> &operator = (const CuVectorBase<Real> &other) {
Resize(other.Dim(), kUndefined);
this->CopyFromVec(other);
return *this;
}
CuVector<Real> &operator = (const CuVector<Real> &other) {
Resize(other.Dim(), kUndefined);
this->CopyFromVec(other);
return *this;
}
CuVector<Real> &operator = (const VectorBase<Real> &other) {
Resize(other.Dim());
this->CopyFromVec(other);
return *this;
}
Utils
void Swap(CuVector<Real> *vec);
void Swap(Vector<Real> *vec);
void Resize(MatrixIndexT length, MatrixResizeType resize_type = kSetZero);
class CuSubVector: public CuVectorBase<Real>
该类表示一个不占有实际数据的泛化向量或向量索引,可以表示高级向量的子向量或矩阵的行。实现多种用于索引的构造函数。
多种构造函数
CuSubVector(const CuVectorBase<Real> &t, const MatrixIndexT origin,
const MatrixIndexT length) : CuVectorBase<Real>() {
KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(origin)+
static_cast<UnsignedMatrixIndexT>(length) <=
static_cast<UnsignedMatrixIndexT>(t.Dim()));
CuVectorBase<Real>::data_ = const_cast<Real*>(t.Data()+origin);
CuVectorBase<Real>::dim_ = length;
}
/// Copy constructor
/// this constructor needed for Range() to work in base class.
CuSubVector(const CuSubVector &other) : CuVectorBase<Real> () {
CuVectorBase<Real>::data_ = other.data_;
CuVectorBase<Real>::dim_ = other.dim_;
}
CuSubVector(const Real* data, MatrixIndexT length) : CuVectorBase<Real> () {
// Yes, we're evading C's restrictions on const here, and yes, it can be used
// to do wrong stuff; unfortunately the workaround would be very difficult.
CuVectorBase<Real>::data_ = const_cast<Real*>(data);
CuVectorBase<Real>::dim_ = length;
}
cudamatrix/cu-matrix.h
与matrix/kaldi-matrixr.h类似的,该头文件声明了几个矩阵类。与之不同的是,但其运算的实现基于CUDA或CBLAS。当Kaldi基于CUDA环境编译且GPU可用(CuDevice::Instantiate().Enabled() == true)则使用CUDA卡进行计算,否则使用CPU进行计算(CBLAS)。
class CuMatrixBase
Cuda矩阵抽象类。该类对基础运算与内存优化进行了封装,只提供矩阵运算。不涉及尺寸缩放和构造函数。
尺寸缩放和构造函数由派生类CuMatrix和CuSubMatrix负责。
class CuMatrix
该类表示普通Cuda矩阵,并实现尺寸缩放和一般的构造函数。
class CuSubMatrix
该类表示一个不占有实际数据的泛化矩阵或矩阵索引,可以表示其他矩阵的矩阵。实现多种用于索引的构造函数。
继承于CuMatrixBase,用于对矩阵的子矩阵(块矩阵)进行运算。
kaldi通用底层矩阵运算库——CUDA的更多相关文章
- kaldi通用底层矩阵运算库——CBLAS
matrix/cblas-wrappers.h 该头文件对CBLAS与CLAPACK的接口进行了简单的封装(将不同数据类型的多个接口封装为一个). 比如 cblas_scopy和cblas_dcopy ...
- C++矩阵运算库推荐
最近在几个地方都看到有人问C++下用什么矩阵运算库比较好,顺便做了个调查,做一些相关的推荐吧.主要针对稠密矩阵,有时间会再写一个稀疏矩阵的推荐. Armadillo:C++下的Matlab替代品 地址 ...
- C++通用框架和库
C++通用框架和库 来源 https://www.cnblogs.com/skyus/articles/8524408.html 关于 C++ 框架.库和资源的一些汇总列表,内容包括:标准库.Web应 ...
- Python底层socket库
Python底层socket库将Unix关于网络通信的系统调用对象化处理,是底层函数的高级封装,socket()函数返回一个套接字,它的方法实现了各种套接字系统调用.read与write与Python ...
- C++矩阵运算库armadillo配置笔记
前言 最近在用C++实现神经网络模型,优化算法需要用到矩阵操作,一开始我用的是boost的ublas库,但用着用着感觉很不习惯,接口不够友好.于是上网搜索矩阵运算哪家强,大神们都推荐armadillo ...
- uTenux——重新整理底层驱动库
重新整理底层驱动库 1. 整理chip.h 在chip.h文件中的07----13的宏定义设置位如下,这样我们就不用在工程配中定义sam3s4c这个宏了,为我们以后通用少了一件麻烦事. //#if d ...
- .net通用底层搭建
.net通用底层搭建 之前写过几篇,有朋友说看不懂,有朋友说写的有点乱,自己看了下,的确是需要很认真的看才能看懂整套思路. 于是写下了这篇. 1.这个底层,使用的是ado.net,微软企业库 2.实体 ...
- YARN底层基础库
YARN基础库是其他一切模块的基础,它的设计直接决定了YARN的稳定性和扩展性,YARN借用了MRV1的一些底层基础库,比如RPC库等,但因为引入了很多新的软件设计方式,所以它的基础库更多,包括直 ...
- Duanxx的Design abroad: C++矩阵运算库Eigen 概要
一.概要 这两天想起来要做神经网络的作业了,要求用C++完毕神经网络的算法. 摆在面前的第一个问题就是,神经网络算法中大量用到了矩阵运算.可是C++不像matlab那样对矩阵运算有非常好的支持.本来准 ...
随机推荐
- 一个 C# 文件权限的帮助类
直接贴代码了: FilePermissionHelper.cs using System.Collections.Generic; using System.IO; using System.Secu ...
- docker 不能访问外网
如果之前docker能访问外网,现在不能访问, 同时宿主机可以访问外网,那就重启docker.
- centos7下给bond网卡配置bridge桥接
这篇的主题可以用几个关键字组合:centos7+kvm + bond + bridge .brige主要用在KVM虚拟化环境下,而bond是进行物理层面的冗余.具体配置信息如下 物理网卡名称:enp0 ...
- 好程序员web前端分享如何理解JS的单线程
好程序员web前端分享如何理解JS单线程,JS本质是单线程的.也就是说,它并不能像JAVA语言那样,两个线程并发执行. 但我们平时看到的JS,分明是可以同时运作很多任务的,这又是怎么回事呢? 首先,J ...
- Boolean 类型转换
原文作者: louis 原文链接: http://louiszhai.github.io/2015/12/11/js.boolean/ 语法 众所周知, JavaScript有五个基本的值类型:num ...
- windows 分页缓冲池 非分页缓冲池
最近在windows server 2012机器上在做性能测试时,发现8G物理内存,内存使用率占到了90%多,在“进程”列表中所有进程内存相加才2个多G,同时任务管理器->“性能”标签一项中,非 ...
- web services + soap + wsdl 学习
什么是web services? 应用程序组件: 使用开放协议进行通信: 独立(self - contained )并可自我描述: 可通过使用UDDI来发现: 可被其他应用程序使用: XML是Web ...
- oracle篇 之 排序、限制查询行
第二章:排序.限制查询行 一.order by子句 1.order by排序规则 (1)asc,升序排列,默认取值 (2)desc,降序排列 (3)order by是select命令的最后一个子句 s ...
- Linux下的Locale详解
locale这个单词中文翻译成地区或者地域,其实这个单词包含的意义要宽泛很多.Locale是根据计算机用户所使用的语言,所在国家或者地区,以及当地的文化传统所定义的一个软件运行时的语言环境. loca ...
- Python 编写一个有道翻译的 workflow 教程
最近使用有道翻译的 workflow 总是翻译不了,可能是 appKey 失效了或者超过调用上限,所以打算自己实现一个. 创建 workflow 打开 Alfred3 的 Preferences,选择 ...