编年史:OI测试
2019.4.18
t1:给出不定方程ax+by+c=0,求x在x1~x2并且y在y1~y2时的解个数。考场上想的是一个扩欧板子敲下去,然后构造出x>=x1的最小解,同时得出y,然后通过通项来枚举x1~x2之间的x,判断y是否合法,然后累计答案即可。但正解并不需要枚举,因为x的通项是x=x0+kb,y是y=y0-kb,现在得出了x0,y0,也知道b,直接解一组不等式就好了:x1<=x0+kb<=x2,y1<=y0-kb<=y2,若k算出来不是整数:a<=k<=b,则下界上取整,上界下取整。考场用时:30min,得分50。
t2:给出一个圆的方程x2+y2=r2,求圆上有多少个坐标为整数的点。考场上先想了个暴力,两边先模上一个大质数p,然后转化为x2+y2Ξr2(mod p) => y2Ξr2-x2,枚举x,然后解出y2,判断y是否为整数,然后累加答案。而光是枚举就会超时。正解是,把圆方程看成一组勾股数,然后通过勾股数的特性来解。考场用时:2h(扩欧一直写挂),得分0。(数据真的强)
t3:定义函数f(n)=11*22*33*...*nn,一共q次询问,对于每次询问给出的r,求f(n)/(f(r)*f(n-r)) mod m。但是考试时给下来的题目把分母的括号吞了,就是:f(n)/f(r)*f(n-r) mod m,照着这个写就挂了。。。我的思路是(当然是求后面这个错式子的思路),离线处理,先线性算出f(i)%m,然后询问时求出f(r)的逆元就可以回答了。顺便写了个记忆化,把f(r)的逆元存了起来。但是好像一组数据之后忘了memset。。。当然那时的思路也是错的,因为f(r)不一定与m互质,不能够求逆元。正解是,把m分解质因数,分别计算对答案的贡献。考场用时:30min(先做的t1,t3),得分0(题目没错的话应该能拿一点)。
编年史:OI测试的更多相关文章
- nowcoder(牛客网)OI测试赛3 解题报告
昨天因为胡搞了一会儿社团的事情,所以错过(逃过)了nowcoder的测试赛..... 以上,听说还是普及组难度qwq,而且还有很多大佬AK(然而我这么蒻肯定还是觉得有点难度的吧qwq) 不过我还是日常 ...
- nowcoder(牛客网)OI测试赛2 解题报告
qwq听说是一场普及组难度的比赛,所以我就兴高采烈地过来了qwq 然后发现题目确实不难qwq.....但是因为蒟蒻我太蒻了,考的还是很差啦qwq orz那些AK的dalao们qwq 赛后闲来无事,弄一 ...
- 牛客oi测试赛 二 B 路径数量
题目描述 给出一个 n * n 的邻接矩阵A. A是一个01矩阵 . A[i][j]=1表示i号点和j号点之间有长度为1的边直接相连. 求出从 1 号点 到 n 号点长度为k的路径的数目. 输入描述: ...
- [牛客OI测试赛2]F假的数学游戏(斯特灵公式)
题意 输入一个整数X,求一个整数N,使得N!恰好大于$X^X$. Sol 考试的时候只会$O(n)$求$N!$的前缀和啊. 不过最后的结论挺好玩的 $n! \approx \sqrt{2 \pi n} ...
- 关于斐波那契数列的一些恒等式 模板 牛客OI测试赛 A 斐波拉契
牛客A 斐波拉契 链接:https://www.nowcoder.com/acm/contest/181/A来源:牛客网 设f[i]表示斐波那契数论的第i项 f[1]=1,f[2] =1,f[i] = ...
- 牛客OI测试赛 C 序列 思维
链接:https://www.nowcoder.com/acm/contest/181/C来源:牛客网 题目描述 小a有n个数,他想把他们划分为连续的权值相等的k段,但他不知道这是否可行. 每个数都必 ...
- 牛客OI测试赛 F 子序列 组合数学 欧拉降幂公式模板
链接:https://www.nowcoder.com/acm/contest/181/F来源:牛客网 题目描述 给出一个长度为n的序列,你需要计算出所有长度为k的子序列中,除最大最小数之外所有数的乘 ...
- 编年史:OI算法总结
目录(按字典序) A --A* D --DFS找环 J --基环树 S --数位动规 --树形动规 T --Tarjan(e-DCC) --Tarjan(LCA) --Tarjan(SCC) --Ta ...
- 牛客OI测试赛2
题目链接:https://www.nowcoder.com/acm/contest/185#question A.无序组数 暴力求出A和B的因子,注意二元组是无序的,因此还要考虑有些因子在A和B中都存 ...
随机推荐
- angular 2+ 变化检测系列二(检测策略)
我们将创建一个简单的MovieApp来显示有关一部电影的信息.这个应用程序将只包含两个组件:显示有关电影的信息的MovieComponent和包含执行某些操作按钮的电影引用的AppComponent. ...
- 【数据库】MySql分割字符串
上论坛时看到一个骨骼清奇的分割字符串算法. DROP TABLE IF EXISTS Tmp_AreaCode; CREATE TABLE Tmp_AreaCode( string ) )ENGINE ...
- Linux安装Tomcat-Nginx-FastDFS-Redis-Solr-集群——【第九集-补充-之安装mariadb】
由于也是第一次安装,再此不必献丑了,贴上参考链接: 1,指导我为什么使用mariadb而不是用mysql:https://blog.csdn.net/liumiaocn/article/details ...
- git操作笔记《二》:github更新缓慢问题的解决办法
从GitHub上拉取代码速度十分之慢,百度了一下,说是github的某些域名的dns解析被污染了. 解决方法: 方案一:可以花钱购买VPN服务,但是这对于学生党来说是不划算的. vpn 方案二:绕过d ...
- python可视化pyecharts
python可视化pyecharts 简单介绍 pyecharts 是一个用于生成 Echarts 图表的类库.Echarts 是百度开源的一个数据可视化 JS 库.用 Echarts 生成的图可视化 ...
- LeetCode 709.To Lower Case
Description Implement function ToLowerCase() that has a string parameter str, and returns the same s ...
- SDOI2019 省选前模板整理
目录 计算几何✔ DP 斜率优化✔ 四边形不等式✔ 轮廓线DP✘ 各种分治 CDQ分治✔ 点分治✔ 整体二分✔ 数据结构 线段树合并✔ 分块✔ K-D Tree LCT 可持久化Trie✔ Splay ...
- (Android UI)Action Bar
Action Bar 指明用户当前所在的界面,添加多个功能性按键和下拉式选择框,以提供能多功能. 主题一:让应用具备ActionBar 可能条件一:Support Android 3.0(API 11 ...
- leetcode 91 Decode Ways I
令dp[i]为从0到i的总方法数,那么很容易得出dp[i]=dp[i-1]+dp[i-2], 即当我们以i为结尾的时候,可以将i单独作为一个字母decode (dp[i-1]),同时也可以将i和i-1 ...
- Spring+Hibernate实现动态SessionFactory切换(改进版)
前面写了一篇关于动态切换Hibernate SessionFactory的文章 发现存在一些问题: 需要配置多个HibernateTransactionManager和多个Spring 切面 这样带来 ...