[cf contest 893(edu round 33)] F - Subtree Minimum Query

time limit per test

6 seconds

memory limit per test

512 megabytes

input

standard input

output

standard output

You are given a rooted tree consisting of n vertices. Each vertex has a number written on it; number ai is written on vertex i.

Let's denote d(i, j) as the distance between vertices i and j in the tree (that is, the number of edges in the shortest path from i to j). Also let's denote the k-blocked subtree of vertex x as the set of vertices y such that both these conditions are met:

  • x is an ancestor of y (every vertex is an ancestor of itself);
  • d(x, y) ≤ k.

You are given m queries to the tree. i-th query is represented by two numbers xi and ki, and the answer to this query is the minimum value of aj among such vertices j such that j belongs to ki-blocked subtree of xi.

Write a program that would process these queries quickly!

Note that the queries are given in a modified way.

Input

The first line contains two integers n and r (1 ≤ r ≤ n ≤ 100000) — the number of vertices in the tree and the index of the root, respectively.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the numbers written on the vertices.

Then n - 1 lines follow, each containing two integers x and y (1 ≤ x, y ≤ n) and representing an edge between vertices x and y. It is guaranteed that these edges form a tree.

Next line contains one integer m (1 ≤ m ≤ 106) — the number of queries to process.

Then m lines follow, i-th line containing two numbers pi and qi, which can be used to restore i-th query (1 ≤ pi, qi ≤ n).

i-th query can be restored as follows:

Let last be the answer for previous query (or 0 if i = 1). Then xi = ((pi + last) modn) + 1, and ki = (qi + last) modn.

Output

Print m integers. i-th of them has to be equal to the answer to i-th query.

Example
input
5 21 3 2 3 52 35 13 44 121 22 3
output
25

我们对于树上的每一个节点开一个线段树(其实是可持久化的)。

每棵线段树都是一个[1..maxdepth]的按照绝对深度来建的线段树。

那么,对于每一个节点x,可以把所以它的子节点的线段树合并到它上面去。

但是这需要可持久化。因为当前节点的信息也要用到。如果不可持久化,可能会导致当前节点的地址在其他线段树里面存在。

实际上,每个地址只存在与一棵线段树中。

然后,由于父子节点之间的线段树只有1条链不同,所以要新建logn个节点。

总共有n-1对父子关系,所以空间为O(nlogn)。

时间复杂度为O(mlogn)。注意强制在线。

code:

 #include <cstdio>
 #include <cstring>
 #include <algorithm>
 typedef long long LL;
 using namespace std;

 void OJ() {
     #ifndef ONLINE_JUDGE
         freopen("in.txt","r",stdin);
         freopen("out.txt","w",stdout);
     #endif
 }

 namespace fastIO {
     #define gec(c) getchar(c)
     #define puc(c) putchar(c)
     char ch;
     inline int read() {
         ,f=; ch=getchar();
         ') {
             if (ch=='-') f=-f;
             ch=gec();
         }
         ') {
             x=(x<<)+(x<<)+(ch^);
             ch=gec();
         }
         return x*f;
     }
     ];
     template <class T> inline void write(T x) {
         ) {
             puc('); return;
         }
         ) x=-x,puc('-');
         ; x; x/=) nnn[++ttt]=x%;
         );
     }
     inline void newline () {
         puc('\n');
     }
 } using namespace fastIO;

 ,inf=2e9;
 int n,q,tot,lim;
 ],son[N<<],dep[N];
 struct node {
     node* l,* r;
     int v;
     node () {
         l=r=;
         v=inf;
     }
 } *ro[N];
 #define M ((l)+(r)>>1)
 inline void refresh (node* c) {
     c->v=inf;
     if (c->l) c->v=min(c->v,c->l->v);
     if (c->r) c->v=min(c->v,c->r->v);
 }
 inline void setup (node* &c,int l,int r,int x,int v) {
     c=new node();
     if (l==r) {
         c->v=v;
         return;
     }
     if (x<=M) setup(c->l,l,M,x,v);
     ,r,x,v);
     refresh(c);
 }
 inline node* merge (node* x,node* y) {
     if (!x||!y) return x?x:y;
     node* ret=new node();
     ret->l=merge(x->l,y->l);
     ret->r=merge(x->r,y->r);
     ret->v=min(x->v,y->v);
     return ret;
 }
 inline int reply (node* u,int l,int r,int x,int y) {
     if (!u) return inf;
     if (x<=l&&r<=y) return u->v;
     if (y<=M) return reply(u->l,l,M,x,y); else
     ,r,x,y); else
     ,r,x,y));
 }
 void add (int x,int y) {
     nxt[++tot]=lnk[x],lnk[x]=tot,son[tot]=y;
 }
 void dfs (int x,int p) {
     setup(ro[x],,n,dep[x]=dep[p]+,a[x]);
     lim=max(lim,dep[x]);
     for (int j=lnk[x]; j; j=nxt[j]) {
         if (son[j]==p) continue;
         dfs(son[j],x);
         ro[x]=merge(ro[x],ro[son[j]]);
     }
 }
 int main() {
     OJ(); ;
     n=read(),rot=read();
     ; i<=n; ++i) {
         a[i]=read(),ro[i]=;
     }
     ; i<n; ++i) {
         x=read(),y=read();
         add(x,y),add(y,x);
     }
     dep[]=lim=,dfs(rot,);
     q=read();
     for ( ; q; --q) {
         x=read(),y=read();
         x=(x+ans)%n+,y=(y+ans)%n;
         ans=reply(ro[x],,n,dep[x],min(lim,dep[x]+y));
         write(ans),newline();
     }
     ;
 }

[cf contest 893(edu round 33)] F - Subtree Minimum Query的更多相关文章

  1. EC Round 33 F. Subtree Minimum Query 主席树/线段树合并

    这题非常好!!! 主席树版本 很简单的题目,给一个按照指定节点的树,树上有点权,你需要回答给定节点的子树中,和其距离不超过k的节点中,权值最小的. 肯定首先一想,按照dfs序列建树,然后按照深度为下标 ...

  2. Educational Codeforces Round 33 (Rated for Div. 2) F. Subtree Minimum Query(主席树合并)

    题意 给定一棵 \(n\) 个点的带点权树,以 \(1\) 为根, \(m\) 次询问,每次询问给出两个值 \(p, k\) ,求以下值: \(p\) 的子树中距离 \(p \le k\) 的所有点权 ...

  3. Codeforces 893F - Subtree Minimum Query

    893F - Subtree Minimum Query 题意 给出一棵树,每次询问 \(x\) \(k\),求以 \(x\) 为根结点的子树中的结点到结点 \(x\) 的距离小于等于 \(k\) 的 ...

  4. CF893F Subtree Minimum Query 解题报告

    CF893F Subtree Minimum Query 输入输出格式 输入格式: The first line contains two integers \(n\) and \(r\) ( \(1 ...

  5. [CF893F] Subtree Minimum Query

    Description: 给定一棵树,每次询问某点子树中到其不超过k的所有点的最小点权 强制在线 Hint: \(n,m\le 10^5\) Solution: 看到题目第一反应是以深度为下标,dfs ...

  6. CF893F Subtree Minimum Query 主席树

    如果是求和就很好做了... 不是求和也无伤大雅.... 一维太难限制条件了,考虑二维限制 一维$dfs$序,一维$dep$序 询问$(x, k)$对应着在$dfs$上查$[dfn[x], dfn[x] ...

  7. Subtree Minimum Query CodeForces - 893F (线段树合并+线段树动态开点)

    题目链接:https://cn.vjudge.net/problem/CodeForces-893F 题目大意:给你n个点,每一个点有权值,然后这n个点会构成一棵树,边权为1.然后有q次询问,每一次询 ...

  8. 2019.01.19 codeforces893F.Subtree Minimum Query(线段树合并)

    传送门 线段树合并菜题. 题意简述:给一棵带点权的有根树,多次询问某个点ppp子树内距离ppp不超过kkk的点的点权最小值,强制在线. 思路: 当然可以用dfsdfsdfs序+主席树水过去. 然而线段 ...

  9. CF893F:Subtree Minimum Query(线段树合并)

    Description 给你一颗有根树,点有权值,m次询问,每次问你某个点的子树中距离其不超过k的点的权值的最小值.(边权均为1,点权有可能重复,k值每次询问有可能不同,强制在线) Input 第一行 ...

随机推荐

  1. Log4j2 日志级别

    Log4j2日志级别 级别 在log4j2中, 共有8个级别,按照从低到高为:ALL < TRACE < DEBUG < INFO < WARN < ERROR < ...

  2. python习题一

    1.26个字母大小写成对打印,例如:Aa,Bb...... 方法1: for i in range(26): print(chr(65+i)+chr(97+i)) 方法2: for i in rang ...

  3. Java集合类学习笔记2

    二,具体的集合 集合类型 描述 ArrayList 一种可以动态增长和缩减的索引序列 LinkedList 一种可以在任何位置进行高效地插入和删除操作的有序序列 ArrayDeque 一种用循环数组实 ...

  4. iOS 开发 Tips

    1.MVVM 的优点 MVVM 兼容 MVC,可以先创建一个简单的 View Model,再慢慢迁移. MVVM 使得 app 更容易测试,因为 View Model 部分不涉及 UI. MVVM 最 ...

  5. 基于OpenCV做“三维重建”(2)--封装标定过程

    既然已经能够找到了标定点,那么下边的工作就是使用标定结果了.[这本书在这里的内容组织让人莫名其妙]但是通过阅读代码能够很方便地串起来. /*------------------------------ ...

  6. CImage的坑

    1.现象 在栈上定义CImage,加载本地图片,在界面上显示,报内存异常,访问失败 2.结论 图片过大,会是CImage产生这种问题 3.解决 把CImage定义到堆上,回收内存 new Load D ...

  7. asp.net 根据连接地址保存文件,图片

    第一种方式  下载图片,文件 WebClient my = new WebClient(); string url = "http://localhost:1015/resource/loa ...

  8. WinForm 设置窗体启动位置在活动屏幕右下角

    WinForm 设置窗体启动位置在活动屏幕右下角 在多屏幕环境下, 默认使用鼠标所在的屏幕 1. 设置窗体的 StartPosition 为 FormStartPosition.Manual. 2. ...

  9. 深度学习网络中numpy多维数组的说明

    目前在计算机视觉中应用的数组维度最多有四维,可以表示为 (Batch_size, Row, Column, Channel) 以下将要从二维数组到四维数组进行代码的简单说明: Tips: 1) 在nu ...

  10. 加sogou 和wps

    刚装完系统,装常用工具: sogoupinyin / wps linux ==========sogoupinyin=========================1.sogou linux 下载d ...