【证明】【一题多解】布尔不等式(union bound)的证明
布尔不等式(Boole’s inequality)也叫(union bound),即并集的上界,描述的是至少一个事件发生的概率(P(⋃iAi)" role="presentation">P(⋃iAi)P(⋃iAi))不大于单独事件(事件之间未必独立)发生的概率之和(∑iP(Ai)" role="presentation">∑iP(Ai)∑iP(Ai))。
即:
展开即为:
1. 数学归纳法证明
- 当 n=1" role="presentation">n=1n=1 时,显然 P(A1)≤P(A1)" role="presentation">P(A1)≤P(A1)P(A1)≤P(A1)
对于 n" role="presentation">nn,如果有:P(⋃i=1nAi)≤∑i=1nP(Ai)" role="presentation">P(⋃ni=1Ai)≤∑ni=1P(Ai)P(⋃i=1nAi)≤∑i=1nP(Ai),则由 P(A∪B)=P(A)+P(B)−P(A∩B)" role="presentation">P(A∪B)=P(A)+P(B)−P(A∩B)P(A∪B)=P(A)+P(B)−P(A∩B) 可知:
P(⋃i=1n+1Ai)=P({⋃i=1nAi}⋃An+1)=P(⋃i=1nAi)+P(An+1)−P({⋃i=1nAi}⋂An+1)≤P(⋃i=1nAi)+P(An+1)" role="presentation">P(⋃i=1n+1Ai)=P({⋃i=1nAi}⋃An+1)=P(⋃i=1nAi)+P(An+1)−P({⋃i=1nAi}⋂An+1)≤P(⋃i=1nAi)+P(An+1)P(⋃i=1n+1Ai)=P({⋃i=1nAi}⋃An+1)=P(⋃i=1nAi)+P(An+1)−P({⋃i=1nAi}⋂An+1)≤P(⋃i=1nAi)+P(An+1)
2. 将事件转换为独立事件(不相交事件)
假设有A1,A2,A3" role="presentation">A1,A2,A3A1,A2,A3 三个事件,则:
- 令 B1=A1,B2=A2−A1" role="presentation">B1=A1,B2=A2−A1B1=A1,B2=A2−A1,B1" role="presentation">B1B1 与 B2" role="presentation">B2B2 不相交
- 令 B2=A2−A1" role="presentation">B2=A2−A1B2=A2−A1 B3=A3−A2−A1" role="presentation">B3=A3−A2−A1B3=A3−A2−A1,B2" role="presentation">B2B2 与 B3" role="presentation">B3B3 不相交
令 Bi=Ai∖(⋃k=1i−1Ai)" role="presentation">Bi=Ai∖(⋃i−1k=1Ai)Bi=Ai∖(⋃k=1i−1Ai),则有 B1,B2,⋯," role="presentation">B1,B2,⋯,B1,B2,⋯, 互不相交,且 A1∪A2∪⋯=B1∪B2∪⋯" role="presentation">A1∪A2∪⋯=B1∪B2∪⋯A1∪A2∪⋯=B1∪B2∪⋯,自然 Bi⊂Ai" role="presentation">Bi⊂AiBi⊂Ai ==> P(Bi)≤P(Ai)" role="presentation">P(Bi)≤P(Ai)P(Bi)≤P(Ai):
【证明】【一题多解】布尔不等式(union bound)的证明的更多相关文章
- 关于SQL的几道小题详解
关于SQL的几道小题详解 当我们拿到题目的时候,并不是急于作答,那样会得不偿失的,而是分析思路,采用什么方法,达到什么目的,还要思考有没有简单的方法或者通用的方法等等,这样才会达到以一当十的效果,这样 ...
- SQLServer 常见SQL笔试题之语句操作题详解
SqlServer 常见SQL笔试题之语句操作题详解 by:授客 QQ:1033553122 测试数据库 CREATE DATABASE handWriting ON PRIMARY ( name = ...
- 牛客网 Java 工程师能力评估 20 题 - 详解
牛客网 Java 工程师能力评估 20 题 - 详解 不知在看博客的你是否知道 牛客网,不知道就太落后了,分享给你 : 牛客网 此 20 题,绝对不只是 20 题! 免责声明:本博客为学习笔记,如有侵 ...
- 一题多解,ASP.NET Core应用启动初始化的N种方案[上篇]
ASP.NET Core应用本质上就是一个由中间件构成的管道,承载系统将应用承载于一个托管进程中运行起来,其核心任务就是将这个管道构建起来.在ASP.NET Core的发展历史上先后出现了三种应用承载 ...
- 一题多解,ASP.NET Core应用启动初始化的N种方案[下篇]
[接上篇]"天下大势,分久必合,合久必分",ASP.NET应用通过GenericWebHostService这个承载服务被整合到基于IHostBuilder/IHost的服务承载系 ...
- HDU 5122 K.Bro Sorting(模拟——思维题详解)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5122 Problem Description Matt's friend K.Bro is an A ...
- Shooting Contest 射击比赛 [POJ1719] [CEOI1997] [一题多解]
Description(下有中文题意) Welcome to the Annual Byteland Shooting Contest. Each competitor will shoot to a ...
- 近期遇到的计(算)算(法)题及解(JavaScript)
以下是近期遇到的三个计(算)算(法)题... 提到这些问题的时候简单理了下思路,后面又以JavaScript代码实现并顺便记个笔记... 至于是什么场景下遇到这些题的么... :) 问题一:从无序数组 ...
- 【做题记录】 [JLOI2011]不等式组
P5482 [JLOI2011]不等式组 超烦人的细节题!(本人调了两天 QAQ ) 这里介绍一种只用到一只树状数组的写法(离线). 树状数组的下标是:所有可能出现的数据进行离散化之后的值. 其含义为 ...
随机推荐
- js 批量提交数据
// 批量提交数据 let pageSize = 100, total = dataTmp.length, list = dataTmp let totalPage = Math.ceil(total ...
- Cognos命名空间不可用
1. 问题描述 启动Cognos失败,报错代码为0146. 2. 问题分析 namespace 配置有问题,检查configuration 3. 解决方案 如果检查不出问题,删除$COGNOS_HOM ...
- Ubuntu安装tomcat
1.下载需要的tomcat二进制包(tar.gz)结尾的. https://tomcat.apache.org/download-80.cgi 2.通过xftp5 上传到指定的文件夹 3.cd进指定文 ...
- linux jpg文件查找木马
find ./ -type f -name "*.jpg" | xargs grep "eval"
- 跟随我在oracle学习php(14)
CSS3的@keyframes用法详解: 此属性与animation属性是密切相关的,关于animation属性可以参阅CSS3的animation属性用法详解一章节. 一.基本知识: keyfram ...
- 跟随我在oracle学习php(12)
DOM 文档对象模型 body:(什么时候)找到标签 操作标签找到标签:(都会返回一个js对象)document.getElementById() 通过iddocument.getElementsBy ...
- 开源HUSTOJ
hustoj -- 请一定认真看完本页再动手安装,以免无谓的折腾!====== 根据你选择的发行版不同,从下面三个脚本里选一个来用. <b>不要相信百度来的长篇大论的所谓教程,那些都是好几 ...
- Android Touch事件相关源码【Android SourceCode 2.3.6】
2018-05-31 17:23:46 Note: 这里的源码来自Android 2.3.6,这个版本的代码比较简单,适合理解Touch事件的传递原理.后续版本源码复杂了很多,但是原理都是类似的. 2 ...
- Java作业:第四次过程性考核 ——长春职业技术学院 16级网络工程
Java作业:第四次过程性考核 码云链接:https://gitee.com/SoridoD/java_kaohe4 (时间匆忙没打注释,真有急事) (客户端和服务器会自动创建表,所以没有sql ...
- Triangle Count
Given an array of integers, how many three numbers can be found in the array, so that we can build a ...