ST表学习笔记
ST表是一种利用DP思想求解最值的倍增算法
ST表常用于解决RMQ问题,即求解区间最值问题
接下来以求最大值为例分步讲解一下ST表的建立过程:
1.定义
f[i][j]表示[i,i+2j-1]这个长度为2j的区间中的最大值
2.预处理
f[i][0]=a[i],即区间[i,i]的最大值就是a[i]
3.状态转移
将[i,i+2j-1]平均分成两份,分别为[i,i+2j-1-1]和[i+2j-1,i+2j-1],两段的长度均为2j
[i,i+2j-1]的最大值为这两段的最大值中的较大值,即f[i][j]=max(f[i][j-1],f[i+2j-1][j-1])
4.核心代码
void ST(int n){
for(int j=;j<=;j++)
//注意要把j放外层,这样可以确保此时f[i+(1<<(j-1))][j-1]已经被赋值了
for(int i=;i<=n;i++)//枚举区间左端点
if(i+(<<j)-<=n)
f[i][j]=max(f[i][j-],f[i+(<<(j-))][j-]);
}
好啦建立好了ST表,接下来我们就可以直接O(1)地查询啦!QWQ
讲一讲查询的步骤:
1.查询过程
若需要查询的区间为[i,j],那么我们需要找到两个覆盖这个闭区间的最小幂区间,这两个区间可以重叠,因为这对区间最大值并没有什么影响。
这个区间的长度为j-i+1,所以我们要记录一个值k=log2(j-i+1)
于是就可以得到答案MAX(i,j)=max(f[i][k],f[j-(1<<k)+1][k])
2.完整代码
#include<bits/stdc++.h>
#define go(i,a,b) for(register int i=a;i<=b;i++)
using namespace std;
const int MAXN=1e6+;
int a[MAXN],f[MAXN][];
void ST(int n){
go(j,,)
go(i,,n)
if(i+(<<j)-<=n)
f[i][j]=max(f[i][j-],f[i+(<<(j-))][j-]);
return;
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
go(i,,n) scanf("%d",&a[i]),f[i][]=a[i];
ST(n);
while(m--){
int i,j;
scanf("%d%d",&i,&j);
int k=(int)(log(j-i+)/log(2.0));
printf("%d\n",max(f[i][k],f[j-(<<k)+][k]));//O(1)直接查询
}
return ;
}
Update!
加一道例题——
ST表学习笔记的更多相关文章
- S-T表学习笔记
$O(nlogn)$构造$O(1)$查询真是太强辣 然而不支持修改= = ShØut! #include<iostream> #include<cstring> #includ ...
- Servlet乘法表学习笔记
一.控制台实现乘法表 package com.shanrengo; import java.io.IOException; import java.io.PrintWriter; import jav ...
- ST表学习总结
前段时间做16年多校联合赛的Contest 1的D题(HDU 5726)时候遇到了多次查询指定区间的gcd值的问题,疑惑于用什么样的方式进行处理,最后上网查到了ST表,开始弄得晕头转向,后来才慢慢找到 ...
- st表复习笔记
st表,一种高效的区间最值查询(RMQ)算法.本质其实是一个动态规划. 其实吧,对于看过线性dp的人来说应该不难理解,只是处理有些麻烦.但是本土狗因为-1的问题居然改了许久... 用两个2^i的区间把 ...
- ST 表练习笔记
P2048 [NOI2010]超级钢琴 首先按照 前缀和最大值 建立 \(ST\) 表 对于每一个 \(i\) 维护一个以他为起始点的最大的 "超级和弦" (\(ST\) 表 \( ...
- java线性表学习笔记(一)
线性表是一种按顺序储存数据是的常用结构,大多数的线性表都支持以下的典型操作: 从线性表提取插入删除一个数据: 找出线性表中的某一个元素: 找出线性表中的元素: 确定线性表中是否包含某一个元素,确定线性 ...
- ST表学习
啊谈不上学习了.复习一下原理留一下板子. $f\left[i,j \right]$表示以$i$为起点,区间长度为${2}^{j}$的区间最值.以最小值为例,即 $min\left(a\left [ k ...
- windows注册表学习笔记
注册表,想起来了就学学,方便操作.无需把它当成重要学问,今日就学一波,作为了解. 一.注册表清理脚本 主要是删除临时文件,旧文件.并不能够删除无效的键 @echo off del/f/s/q %sys ...
- ST 表学习
作用:ST算法是用来求解给定区间RMQ的最值,本文以最小值为例 举例: 给出一数组A[0~5] = {5,4,6,10,1,12},则区间[2,5]之间的最值为1. 方法:ST算法分成两部分:离线预处 ...
随机推荐
- 关于创建本地docker仓库
从远程仓库中下载regitstry镜像文件,下载后运行命令即可:docker run -p 5000:5000 -d registry
- MySQL数据库事务及其特性
一.事务概念 事务就是一个程序执行单元,里面的操作要么都做,要么都不做. 二.事务特性 事务有四个非常重要的特性(ACID): 原子性(Atomicity):事务是不可分割的整体,所有操作要么全做,要 ...
- K8S集群技术
1.快速部署K8S环境 k8s-m :10.0.0.11 k8s-n1 :10.0.0.12 k8s-n2 :10.0.0.13 2.所有节点安装docker环境及依赖 2.1 上传docke ...
- Spring-data-redis操作redis知识总结
什么是spring-data-redis spring-data-redis是spring-data模块的一部分,专门用来支持在spring管理项目对redis的操作,使用java操作redis最常用 ...
- PySocks安装使用方法
PySocks是一个基于Python的SOCKS代理客户端,它是SocksiPy的一个分支,修改了一些bug和增加了一些额外功能. ---------------------------------- ...
- Golang 入门系列(四)如何理解interface接口
前面讲了很多Go 语言的基础知识,包括go环境的安装,go语言的语法等,感兴趣的朋友,可以先看看之前的文章.https://www.cnblogs.com/zhangweizhong/category ...
- SpringCloud(10)使用Spring Cloud OAuth2和JWT保护微服务
采用Spring Security AOuth2 和 JWT 的方式,避免每次请求都需要远程调度 Uaa 服务.采用Spring Security OAuth2 和 JWT 的方式,Uaa 服务只验证 ...
- 家庭记账本小程序之查(java web基础版六)
实现查询消费账单 1.main_left.jsp中该部分,调用search.jsp 2.search.jsp,提交到Servlet中的search方法 <%@ page language=&qu ...
- ABP中模块初始化过程(二)
在上一篇介绍在StartUp类中的ConfigureService()中的AddAbp方法后我们再来重点说一说在Configure()方法中的UserAbp()方法,还是和前面的一样我们来通过代码来进 ...
- Redmine简易安装与系统优化
安装版本为bitnami-redmine-2.6.5-0 ,用的Bitnami的一键安装包 . 下载地址https://bitnami.com/stack/redmine/installer 简要安装 ...