ST表是一种利用DP思想求解最值的倍增算法

ST表常用于解决RMQ问题,即求解区间最值问题

接下来以求最大值为例分步讲解一下ST表的建立过程:

1.定义

f[i][j]表示[i,i+2j-1]这个长度为2j的区间中的最大值

2.预处理

f[i][0]=a[i],即区间[i,i]的最大值就是a[i]

3.状态转移

将[i,i+2j-1]平均分成两份,分别为[i,i+2j-1-1]和[i+2j-1,i+2j-1],两段的长度均为2j

[i,i+2j-1]的最大值为这两段的最大值中的较大值,即f[i][j]=max(f[i][j-1],f[i+2j-1][j-1])

4.核心代码

void ST(int n){
for(int j=;j<=;j++)
//注意要把j放外层,这样可以确保此时f[i+(1<<(j-1))][j-1]已经被赋值了
for(int i=;i<=n;i++)//枚举区间左端点
if(i+(<<j)-<=n)
f[i][j]=max(f[i][j-],f[i+(<<(j-))][j-]);
}

好啦建立好了ST表,接下来我们就可以直接O(1)地查询啦!QWQ

讲一讲查询的步骤:

1.查询过程

若需要查询的区间为[i,j],那么我们需要找到两个覆盖这个闭区间的最小幂区间,这两个区间可以重叠,因为这对区间最大值并没有什么影响。

这个区间的长度为j-i+1,所以我们要记录一个值k=log2(j-i+1)

于是就可以得到答案MAX(i,j)=max(f[i][k],f[j-(1<<k)+1][k])

2.完整代码

 #include<bits/stdc++.h>
#define go(i,a,b) for(register int i=a;i<=b;i++)
using namespace std;
const int MAXN=1e6+;
int a[MAXN],f[MAXN][];
void ST(int n){
go(j,,)
go(i,,n)
if(i+(<<j)-<=n)
f[i][j]=max(f[i][j-],f[i+(<<(j-))][j-]);
return;
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
go(i,,n) scanf("%d",&a[i]),f[i][]=a[i];
ST(n);
while(m--){
int i,j;
scanf("%d%d",&i,&j);
int k=(int)(log(j-i+)/log(2.0));
printf("%d\n",max(f[i][k],f[j-(<<k)+][k]));//O(1)直接查询
}
return ;
}

Update!

加一道例题——

邻值查找

ST表学习笔记的更多相关文章

  1. S-T表学习笔记

    $O(nlogn)$构造$O(1)$查询真是太强辣 然而不支持修改= = ShØut! #include<iostream> #include<cstring> #includ ...

  2. Servlet乘法表学习笔记

    一.控制台实现乘法表 package com.shanrengo; import java.io.IOException; import java.io.PrintWriter; import jav ...

  3. ST表学习总结

    前段时间做16年多校联合赛的Contest 1的D题(HDU 5726)时候遇到了多次查询指定区间的gcd值的问题,疑惑于用什么样的方式进行处理,最后上网查到了ST表,开始弄得晕头转向,后来才慢慢找到 ...

  4. st表复习笔记

    st表,一种高效的区间最值查询(RMQ)算法.本质其实是一个动态规划. 其实吧,对于看过线性dp的人来说应该不难理解,只是处理有些麻烦.但是本土狗因为-1的问题居然改了许久... 用两个2^i的区间把 ...

  5. ST 表练习笔记

    P2048 [NOI2010]超级钢琴 首先按照 前缀和最大值 建立 \(ST\) 表 对于每一个 \(i\) 维护一个以他为起始点的最大的 "超级和弦" (\(ST\) 表 \( ...

  6. java线性表学习笔记(一)

    线性表是一种按顺序储存数据是的常用结构,大多数的线性表都支持以下的典型操作: 从线性表提取插入删除一个数据: 找出线性表中的某一个元素: 找出线性表中的元素: 确定线性表中是否包含某一个元素,确定线性 ...

  7. ST表学习

    啊谈不上学习了.复习一下原理留一下板子. $f\left[i,j \right]$表示以$i$为起点,区间长度为${2}^{j}$的区间最值.以最小值为例,即 $min\left(a\left [ k ...

  8. windows注册表学习笔记

    注册表,想起来了就学学,方便操作.无需把它当成重要学问,今日就学一波,作为了解. 一.注册表清理脚本 主要是删除临时文件,旧文件.并不能够删除无效的键 @echo off del/f/s/q %sys ...

  9. ST 表学习

    作用:ST算法是用来求解给定区间RMQ的最值,本文以最小值为例 举例: 给出一数组A[0~5] = {5,4,6,10,1,12},则区间[2,5]之间的最值为1. 方法:ST算法分成两部分:离线预处 ...

随机推荐

  1. tcping ,一个好用的TCP端口检测工具

    1.常用的用法(windows) tcp -w 10 -t -d -i 5 -j --color 81.156.165.66 443 2. http模式 -u,与-h命令连用,每一行输出目标的url ...

  2. 基于 HTML5 的 WebGL 楼宇自控 3D 可视化监控

    前言 智慧楼宇和人们的生活息息相关,楼宇智能化程度的提高,会极大程度的改善人们的生活品质,在当前工业互联网大背景下受到很大关注.目前智慧楼宇可视化监控的主要优点包括: 智慧化 -- 智慧楼宇是一个生态 ...

  3. redis--小白博客

    概述 redis是一种nosql数据库,他的数据是保存在内存中,同时redis可以定时把内存数据同步到磁盘,即可以将数据持久化,并且他比memcached支持更多的数据结构(string,list列表 ...

  4. java高级-动态注入替换类Instrumentation

    介绍 利用java.lang.instrument(容器类) 做动态 Instrumentation(执行容器) 是 Java SE 5 的新特性. 使用 Instrumentation,开发者可以构 ...

  5. Tutorial 01_熟悉常用的Linux操作和Hadoop操作

    (一)熟悉常用的Linux 操作cd 命令:切换目录 (1) 切换到目录“/usr/local” (2) 切换到当前目录的上一级目录 (3) 切换到当前登录Linux 系统的用户的自己的主文件夹  ...

  6. Laravel 框架结构 以及目录文件解读(学习笔记)

    composer下载Laravel 5.4(由于PHP版本仅7.0,故未下载5.6) composer create-project laravel/laravel your-project-name ...

  7. redis简介与持久化

    一 . redis简介 redis属于NoSQL学名(not only sql) 特点: 存储结构与mysql这一种关系型数据库完全不同,nosql存储的是key value形式 nosql有很多产品 ...

  8. BEX5下增加sessionStorage监听器实现页面间数据刷新

    场景: A页面修改了数据,希望B页面能进行及时的同步前端数据,但是假如当A页面修改保存后,去获得B页面的model对象,会增加开发的难度,同时A页面也不能重复利用:假如在B页面的激活事件里面写刷新代码 ...

  9. deepin配置Oracle JDK

    这里记录一下入手deepin后,安装JDK的过程,和之前的CentOS有些不同 本篇参考了两篇博客 1 2 第一篇有些问题,在第二篇中找到了解决方案 接下来是操作过程: 检查本机自带的OpenJDK, ...

  10. 对Datatable中过长内容实行省略话

    , 16) + '...</a>' } // 点击跳转的实现 else { return '<a id="taskFocus" href="/task_ ...