KFold,StratifiedKFold k折交叉切分
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share
原文链接
https://blog.csdn.net/wqh_jingsong/article/details/77896449
StratifiedKFold用法类似Kfold,但是他是分层采样,确保训练集,测试集中各类别样本的比例与原始数据集中相同。
例子:
import numpy as np
from sklearn.model_selection import KFold,StratifiedKFold
X=np.array([
[1,2,3,4],
[11,12,13,14],
[21,22,23,24],
[31,32,33,34],
[41,42,43,44],
[51,52,53,54],
[61,62,63,64],
[71,72,73,74]
]) y=np.array([1,1,0,0,1,1,0,0])
#n_folds这个参数没有,引入的包不同,
floder = KFold(n_splits=4,random_state=0,shuffle=False)
sfolder = StratifiedKFold(n_splits=4,random_state=0,shuffle=False) for train, test in sfolder.split(X,y):
print('Train: %s | test: %s' % (train, test))
print(" ") for train, test in floder.split(X,y):
print('Train: %s | test: %s' % (train, test))
print(" ")
结果:
1.
Train: [1 3 4 5 6 7] | test: [0 2]
Train: [0 2 4 5 6 7] | test: [1 3]
Train: [0 1 2 3 5 7] | test: [4 6]
Train: [0 1 2 3 4 6] | test: [5 7]
2.
Train: [2 3 4 5 6 7] | test: [0 1]
Train: [0 1 4 5 6 7] | test: [2 3]
Train: [0 1 2 3 6 7] | test: [4 5]
Train: [0 1 2 3 4 5] | test: [6 7]
分析:可以看到StratifiedKFold 分层采样交叉切分,确保训练集,测试集中各类别样本的比例与原始数据集中相同。
https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)

KFold,StratifiedKFold k折交叉切分的更多相关文章
- 模型选择---KFold,StratifiedKFold k折交叉切分
StratifiedKFold用法类似Kfold,但是他是分层采样,确保训练集,测试集中各类别样本的比例与原始数据集中相同. 例子: import numpy as np from sklearn.m ...
- sklearn的K折交叉验证函数KFold使用
K折交叉验证时使用: KFold(n_split, shuffle, random_state) 参数:n_split:要划分的折数 shuffle: 每次都进行shuffle,测试集中折数的总和就是 ...
- 机器学习--K折交叉验证和非负矩阵分解
1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做 ...
- cross_val_score 交叉验证与 K折交叉验证,嗯都是抄来的,自己作个参考
因为sklearn cross_val_score 交叉验证,这个函数没有洗牌功能,添加K 折交叉验证,可以用来选择模型,也可以用来选择特征 sklearn.model_selection.cross ...
- 小白学习之pytorch框架(7)之实战Kaggle比赛:房价预测(K折交叉验证、*args、**kwargs)
本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂( ...
- 小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播
下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) ...
- k折交叉验证
原理:将原始数据集划分为k个子集,将其中一个子集作为验证集,其余k-1个子集作为训练集,如此训练和验证一轮称为一次交叉验证.交叉验证重复k次,每个子集都做一次验证集,得到k个模型,加权平均k个模型的结 ...
- K折-交叉验证
k-折交叉验证(k-fold crossValidation):在机器学习中,将数据集A分为训练集(training set)B和测试集(test set)C,在样本量不充足的情况下,为了充分利用数据 ...
- 偏差(bias)和方差(variance)及其与K折交叉验证的关系
先上图: 泛化误差可表示为偏差.方差和噪声之和 偏差(bias):学习算法的期望预测与真实结果(train set)的偏离程度(平均预测值与真实值之差),刻画算法本身的拟合能力: 方差(varianc ...
随机推荐
- MySQL安装之yum安装
转载来源:https://www.cnblogs.com/brianzhu/p/8575243.html 1. 下载并安装MySQL官方的 Yum Repository 1 [root@BrianZh ...
- python正常时间和unix时间戳时间的相互转换源码
在学习过程,将内容过程比较常用的一些内容做个珍藏,下面的内容段是关于python正常时间和unix时间戳时间的相互转换的内容,应该是对各朋友有些帮助. import time def timestam ...
- LeetCode算法题-Self Dividing Numbers(Java实现)
这是悦乐书的第305次更新,第324篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第173题(顺位题号是728).自分割数是一个可被其包含的每个数字整除的数字.例如,12 ...
- top命令用法详解
top命令可以实时动态地查看系统的整体运行情况,是一个综合了多方信息监测系统性能和运行信息的实用工具.通过top命令所提供的互动式界面,用热键可以管理. 语法 top(选项) 选项 -b:以批处理模式 ...
- emacs常用指令
虽然平时用Dev,但考试的时候linux下没有Dev,只能用emacs了…… 这里记录一些我常用的指令和配置文件中的代码行. 指令: 1.c-x 1:只留一个窗口 2.c-x 2:分成上下两个窗口 3 ...
- 关于使用tradingview插件的一些心得
1.禁用自带的一些功能 disabled_features: [ // 开启图表功能的字符串文字 允许将用户设置保存到本地存储 'header_symbol_search', // 头部搜索 &quo ...
- 使用jsp,tag提取字符串中的单词
JSP中调用Tag在表单中输入字符串,提取其中的单词 参考代码:giveString.jsp <%@ page contentType="text/html; charset=GB23 ...
- Android布局理解
参考菜鸟教程,原文请查看:https://www.runoob.com/w3cnote/android-tutorial-linearlayout.html 1.FrameLayout(帧布局) 帧布 ...
- 安装Cnario Player 3.8.1.156或其他版本时提示"Warning 4154. Adobe Flash Player 13 ...not correctly installed"
错误提示 安装Cnario Player 3.8.1.156或其他版本时, 有时会出现如下提示: Warning 4154. Adobe Flash Player 13 ...not correctl ...
- Mobile CI/CD 101
This is a guest post by Slava Chernikoff, Principal Engineer at Binwell. Mobile DevOps falls under t ...
