python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

原文链接

https://blog.csdn.net/wqh_jingsong/article/details/77896449

StratifiedKFold用法类似Kfold,但是他是分层采样,确保训练集,测试集中各类别样本的比例与原始数据集中相同。

例子:

import numpy as np
from sklearn.model_selection import KFold,StratifiedKFold

X=np.array([
[1,2,3,4],
[11,12,13,14],
[21,22,23,24],
[31,32,33,34],
[41,42,43,44],
[51,52,53,54],
[61,62,63,64],
[71,72,73,74]
]) y=np.array([1,1,0,0,1,1,0,0])
#n_folds这个参数没有,引入的包不同,
floder = KFold(n_splits=4,random_state=0,shuffle=False)
sfolder = StratifiedKFold(n_splits=4,random_state=0,shuffle=False) for train, test in sfolder.split(X,y):
print('Train: %s | test: %s' % (train, test))
print(" ") for train, test in floder.split(X,y):
print('Train: %s | test: %s' % (train, test))
print(" ")

结果:

1.
Train: [1 3 4 5 6 7] | test: [0 2]

Train: [0 2 4 5 6 7] | test: [1 3]

Train: [0 1 2 3 5 7] | test: [4 6]

Train: [0 1 2 3 4 6] | test: [5 7]

2.
Train: [2 3 4 5 6 7] | test: [0 1]

Train: [0 1 4 5 6 7] | test: [2 3]

Train: [0 1 2 3 6 7] | test: [4 5]

Train: [0 1 2 3 4 5] | test: [6 7]

分析:可以看到StratifiedKFold 分层采样交叉切分,确保训练集,测试集中各类别样本的比例与原始数据集中相同。

 https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)

  

KFold,StratifiedKFold k折交叉切分的更多相关文章

  1. 模型选择---KFold,StratifiedKFold k折交叉切分

    StratifiedKFold用法类似Kfold,但是他是分层采样,确保训练集,测试集中各类别样本的比例与原始数据集中相同. 例子: import numpy as np from sklearn.m ...

  2. sklearn的K折交叉验证函数KFold使用

    K折交叉验证时使用: KFold(n_split, shuffle, random_state) 参数:n_split:要划分的折数 shuffle: 每次都进行shuffle,测试集中折数的总和就是 ...

  3. 机器学习--K折交叉验证和非负矩阵分解

    1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做 ...

  4. cross_val_score 交叉验证与 K折交叉验证,嗯都是抄来的,自己作个参考

    因为sklearn cross_val_score 交叉验证,这个函数没有洗牌功能,添加K 折交叉验证,可以用来选择模型,也可以用来选择特征 sklearn.model_selection.cross ...

  5. 小白学习之pytorch框架(7)之实战Kaggle比赛:房价预测(K折交叉验证、*args、**kwargs)

    本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂( ...

  6. 小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播

    下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) ...

  7. k折交叉验证

    原理:将原始数据集划分为k个子集,将其中一个子集作为验证集,其余k-1个子集作为训练集,如此训练和验证一轮称为一次交叉验证.交叉验证重复k次,每个子集都做一次验证集,得到k个模型,加权平均k个模型的结 ...

  8. K折-交叉验证

    k-折交叉验证(k-fold crossValidation):在机器学习中,将数据集A分为训练集(training set)B和测试集(test set)C,在样本量不充足的情况下,为了充分利用数据 ...

  9. 偏差(bias)和方差(variance)及其与K折交叉验证的关系

    先上图: 泛化误差可表示为偏差.方差和噪声之和 偏差(bias):学习算法的期望预测与真实结果(train set)的偏离程度(平均预测值与真实值之差),刻画算法本身的拟合能力: 方差(varianc ...

随机推荐

  1. python使用rabbitMQ介绍五(话题模式)

    一.模式介绍 话题模式(Topic)基本思想和路由模式是一样的,只不过路由键支持模糊匹配,符号“#”匹配一个或多个词,符号“*”匹配不多不少一个词 话题模式相当于消息的模糊匹配,或者按照正则匹配.其中 ...

  2. linux下oracle启动关闭

    1.以oracle身份登录数据库,命令:su – oracle 2.执行以下命令查看数据库监听器的状况: lsnrctl status 3.执行以下命令停止数据库监听器运行: lsnrctl stop ...

  3. crontab的笔试题随想

    最近看到一道题目,具体如下: 下列哪个是创建一个每周三01:00~04:00每3分钟执行一次的crontab指令? A: 1,4 3 /bin/bash /home/sijiaomao/ok.sh B ...

  4. Chrome 清除当前网站下的缓存

    打开开发者工具(F12),选择 Network--Disable cache 即可.需要清除某网站缓存时 F12 打开开发者工具就会自动清除这个网站的缓存,而不必清除所有网站的缓存了. 如评论中大佬所 ...

  5. jquery html() callback

    通过JQuery的.html()函数我们可以非常方便地加载一段HTML到指定的元素中,例如给<div></div>中放入一组图片.问题是JQuery的.html()函数是同步的 ...

  6. firewalld简介及功能

    1. firewalld简介 firewalld是CentOS7/Red Hat7的一大特性,最大的好处有两个: 第一个支持动态更新,不用重启服务: 第二个就是加入了防火墙的zone概念 firewa ...

  7. ​Installing the Ranger Kafka Plug-in

    This section describes how to install and enable the Ranger Kafka plug-in. The Ranger Kafka plug-in ...

  8. 对多条件进行组合,生成笛卡尔积的用例集合的python代码实现

    做专项测试需要对一些因素进行组合的测试,这里组合起来后数据量可能很大,我们可以用python来代劳 代码有优化空间,目前先用着. ************************代码开始******* ...

  9. 超链接标签绑定JS事件&&不加"javascript:;"导致的杯具

    很久以来,在写Html和JS时,经常会给超链接<a>标签,绑定JS事件. 我们经常看到这样的写法,<a href="javascript:;" onclick=& ...

  10. 软工+C(4): Alpha/Beta换人

    // 上一篇:超链接 // 下一篇:工具和结构化 注:在一次软件工程讨论课程进度设计的过程中,出现了这个关于 Alpha/Beta换人机制的讨论,这个机制在不同学校有不同的实施,本篇积累各方观点,持续 ...