内容目录

  • 1. 统计函数
  • 2. 窗口函数
  • 3. 加深加强

  数据准备

# 导入相关库
import numpy as np
import pandas as pd
#Pandas 中包含了非常丰富的计算工具,如一些统计函数、窗口函数、聚合等计算工具。
index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"], name="name")
data = {
"age": [18, 40, 28, 20, 30, 35],
"income": [1000, 4500 , 1800, 1800, 3000, np.nan],
}
df = pd.DataFrame(data=data, index=index)
df
Out[43]:
age income
name
Tom 18 1000.0
Bob 40 4500.0
Mary 28 1800.0
James 20 1800.0
Andy 30 3000.0
Alice 35 NaN

1.统计函数

  最常见的计算工具莫过于一些统计函数了。

  这里我们首先构建一个包含了用户年龄与收入的 DataFrame。我们可以通过 cov 函数来求出年龄与收入之间的协方差,计算的时候会丢弃缺失值。除了协方差之外,我们还可以通过 corr 函数来计算下它们之间的相关性,计算的时候会丢弃缺失值。默认情况下 corr 计算相关性时用到的方法是 pearson,当然了你也可以指定 kendall 或 spearman。除了相关性的计算外,还可以通过 rank 函数求出数据的排名顺序。如果有相同的数,默认取其排名的平均值作为值。我们可以设置参数来得到不同的结果。可以设置的参数有:min、max、first、dense。

#协方差
df.age.cov(df.income)
#相关系数
df.age.corr(df.income)
df.age.corr(df.income,method="kendall")
df.age.corr(df.income,method="spearman")
#排名
df.income.rank()
df.income.rank(method="first")  

2.窗口函数

  有的时候,我们需要对不同窗口的中数据进行一个统计,常见的窗口类型为时间窗口。
  例如,下面是某个餐厅 7 天的营业额,我们想要计算每两天的收入总额,如何计算呢?
通过 rolling 我们可以实现,设置 window=2 来保证窗口长度为 2,设置 on="date" 来保证根据日期这一列来滑动窗口(默认不设置,表示根据索引来欢动)

data = {
"turnover": [12000, 18000, np.nan, 12000, 9000, 16000, 18000],
"date": pd.date_range("2018-07-01", periods=7)
}
df2 = pd.DataFrame(data=data)
df2
Out[44]:
turnover date
0 12000.0 2018-07-01
1 18000.0 2018-07-02
2 NaN 2018-07-03
3 12000.0 2018-07-04
4 9000.0 2018-07-05
5 16000.0 2018-07-06
6 18000.0 2018-07-07
df2.rolling(window=2, on="date").sum()
Out[45]:
turnover date
0 NaN 2018-07-01
1 30000.0 2018-07-02
2 NaN 2018-07-03
3 NaN 2018-07-04
4 21000.0 2018-07-05
5 25000.0 2018-07-06
6 34000.0 2018-07-07
#是不是发现,有很多结果是缺失值,导致这个结果的原因是因为在计算时,窗口中默认需要的最小数据个数与窗口长度一致,这里可以设置 min_periods=1 来修改下。
df2.rolling(window=2, on="date", min_periods=1).sum()
Out[46]:
turnover date
0 12000.0 2018-07-01
1 30000.0 2018-07-02
2 18000.0 2018-07-03
3 12000.0 2018-07-04
4 21000.0 2018-07-05
5 25000.0 2018-07-06
6 34000.0 2018-07-07
#有时候,我想要计算每段时间的累加和,如何实现呢?先来看看第一种方式吧。
df2.rolling(window=len(df2), on="date", min_periods=1).sum()
Out[47]:
turnover date
0 12000.0 2018-07-01
1 30000.0 2018-07-02
2 30000.0 2018-07-03
3 42000.0 2018-07-04
4 51000.0 2018-07-05
5 67000.0 2018-07-06
6 85000.0 2018-07-07
#还有另外一种方式,直接使用 expanding 来生成窗口。
df2.expanding(min_periods=1)["turnover"].sum()
Out[48]:
0 12000.0
1 30000.0
2 30000.0
3 42000.0
4 51000.0
5 67000.0
6 85000.0
Name: turnover, dtype: float64

 3、加深加强

除了可以使用 sum 函数外,还有很多其他的函数可以使用,如:count、mean、median、min、max、std、var、quantile、apply、cov、corr等等。
方法	描述
count() 非空观测值数量
sum() 值的总和
mean() 价值的平均值
median() 值的算术中值
min() 最小值
max() 最大
std() 贝塞尔修正样本标准差
var() 无偏方差
skew() 样品偏斜度(三阶矩)
kurt() 样品峰度(四阶矩)
quantile() 样本分位数(百分位上的值)
apply() 通用适用
cov() 无偏协方差(二元)
corr() 相关(二进制)
不过上面的方式只能生成一个结果,有时候想要同时求出多个结果(如求和和均值),如何实现呢?
借助 agg 函数可以快速实现
df2.rolling(window=2, min_periods=1)["turnover"].agg([np.sum, np.mean])
Out[52]:
sum mean
0 12000.0 12000.0
1 30000.0 15000.0
2 18000.0 18000.0
3 12000.0 12000.0
4 21000.0 10500.0
5 25000.0 12500.0
6 34000.0 17000.0
#如果传入一个字典,可以为生成的统计结果重命名。
df2.rolling(window=2, min_periods=1)["turnover"].agg({"tur_sum": np.sum, "tur_mean": np.mean})
Out[53]:
tur_sum tur_mean
0 12000.0 12000.0
1 30000.0 15000.0
2 18000.0 18000.0
3 12000.0 12000.0
4 21000.0 10500.0
5 25000.0 12500.0
6 34000.0 17000.0

  

 

Pandas系列(七)-计算工具介绍的更多相关文章

  1. Pandas 计算工具介绍

    # 导入相关库 import numpy as np import pandas as pd 统计函数 最常见的计算工具莫过于一些统计函数了.首先构建一个包含了用户年龄与收入的 DataFrame i ...

  2. 红豆带你从零学C#系列—Visual Studio工具介绍、下载和安装

    一.Visual Studio的下载 Visual Studio(简称VS)是微软的一套完整的开发工具集,集成了能够开发并运行如C#.C++.VB.F#等程序的开发环境,目前最新的版本是Visual ...

  3. 计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践

    计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践 2018年06月13日 16:38:11 轻春 阅读数 6004更多 分类专栏: 机器学习 机器学习荐货情报局   版 ...

  4. 自定义View系列教程01--常用工具介绍

    站在源码的肩膀上全解Scroller工作机制 Android多分辨率适配框架(1)- 核心基础 Android多分辨率适配框架(2)- 原理剖析 Android多分辨率适配框架(3)- 使用指南 自定 ...

  5. 系列二VS项目软件配置工具介绍

    原文:系列二VS项目软件配置工具介绍 Svn和VisualSvn介绍 在使用TortoiseSvn(SVN客户端)+ AnkhSvn(VS2008插件) +VisualSvn Server(版本控制服 ...

  6. 动态可视化 数据可视化之魅D3,Processing,pandas数据分析,科学计算包Numpy,可视化包Matplotlib,Matlab语言可视化的工作,Matlab没有指针和引用是个大问题

    动态可视化 数据可视化之魅D3,Processing,pandas数据分析,科学计算包Numpy,可视化包Matplotlib,Matlab语言可视化的工作,Matlab没有指针和引用是个大问题 D3 ...

  7. java基础解析系列(七)---ThreadLocal原理分析

    java基础解析系列(七)---ThreadLocal原理分析 目录 java基础解析系列(一)---String.StringBuffer.StringBuilder java基础解析系列(二)-- ...

  8. Pandas系列之入门篇

    Pandas系列之入门篇 简介 pandas 是 python用来数据清洗.分析的包,可以使用类sql的语法方便的进行数据关联.查询,属于内存计算范畴, 效率远远高于硬盘计算的数据库存储.另外pand ...

  9. Red Gate系列 - SQL各种工具

    Red Gate系列 - SQL各种工具 Red Gate系列文章: Red Gate系列之一 SQL Compare 10.4.8.87 Edition 数据库比较工具 完全破解+使用教程 Red ...

随机推荐

  1. hive笔记:复杂数据类型-map结构

    map 结构 1. 语法:map(k1,v1,k2,v2,…)   操作类型:map ,map类型的数据可以通过'列名['key']的方式访问 案例: select deductions['Feder ...

  2. 微信小程序测试方法总结

    最近的新项目是小程序加web端后台管理 主要找了些文章方便自己使用也分享给大家: 小程序官方文档 https://developers.weixin.qq.com/miniprogram/design ...

  3. 英语口语练习系列-C19-喜欢某人

    简单词汇 1. chair [tʃeə(r)] n. 椅子 chair = ch + air拼读的时候ch发音以及air发音 [ ] sit on a chair 坐在椅子上 [ ] a table ...

  4. 【技术文章】《初识Python》

    本文地址:http://www.cnblogs.com/aiweixiao/p/8390413.html 原文地址 点击关注微信公众号 wenyuqinghuai 1.前言 早就知道Python这一语 ...

  5. requests的基本用法

    r = requests.get('https://api.github.com/events', params = {'key1': 'value1', 'key2': 'value2'}) r = ...

  6. 第三节 pandas续集

    import pandas as pd from pandas import Series from pandas import DataFrame import numpy as np 一 创建多层 ...

  7. vue li click

    <ul>      <li @click="mechanisms(1)">AAAAA</li>      <li @click=" ...

  8. LVS负载均衡集群

    回顾-Nginx反向代理型负载 负载均衡(load balance)集群,提供了一种廉价.有效.透明的方法,来扩展网络设备和服务器的负载.带宽.增加吞吐量.加强网络数据处理能力.提高网络的灵活性和可用 ...

  9. Locust:简介和基本用法

    我个人在性能测试工作中,负载生成工具使用的大多都是jmeter,之前学习python时顺带了解过python开源的性能测试框架locust. 这篇博客,简单介绍下locust的使用方法,仅供参考... ...

  10. 让linux启动更快的方法

    导读 进行 Linux 内核与固件开发的时候,往往需要多次的重启,会浪费大把的时间. 在所有我拥有或使用过的电脑中,启动最快的那台是 20 世纪 80 年代的电脑.在你把手从电源键移到键盘上的时候,B ...