pd.read_csv() 、to_csv() 之 常用参数
本文简单介绍一下read_csv()和 to_csv()的参数,最常用的拿出来讲,较少用的请转到官方文档看。
一.pd.read_csv()
作用:将csv文件读入并转化为数据框形式。
pd.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=False, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, skip_footer=0, doublequote=True, delim_whitespace=False, as_recarray=False, compact_ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, memory_map=False, float_precision=None)
好多参数呀!
下面来看常用参数:
1.filepath_or_buffer:(这是唯一一个必须有的参数,其它都是按需求选用的)
文件所在处的路径
2.sep:
指定分隔符,默认为逗号','
3.delimiter : str, default None
定界符,备选分隔符(如果指定该参数,则sep参数失效)
4.header:int or list of ints, default ‘infer’
指定哪一行作为表头。默认设置为0(即第一行作为表头),如果没有表头的话,要修改参数,设置header=None
5.names:
指定列的名称,用列表表示。一般我们没有表头,即header=None时,这个用来添加列名就很有用啦!
6.index_col:
指定哪一列数据作为行索引,可以是一列,也可以多列。多列的话,会看到一个分层索引
7.prefix:
给列名添加前缀。如prefix="x",会出来"x1"、"x2"、"x3"酱纸
8.nrows : int, default None
需要读取的行数(从文件头开始算起)
9.encoding:
乱码的时候用这个就是了,官网文档看看用哪个:
https://docs.python.org/3/library/codecs.html#standard-encodings
10.skiprows : list-like or integer, default None
需要忽略的行数(从文件开始处算起),或需要跳过的行号列表(从0开始)。
下面是举栗子时间:
import pandas as pd
data = pd.read_csv(r"G:\data\Kaggle\Titanic\train.csv")
data.head()
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
data1 = pd.read_csv(r"G:\data\Kaggle\Titanic\train.csv",header=None) #可以看到表头都直接当作数据在用了
data1.head()
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
1 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22 | 1 | 0 | A/5 21171 | 7.25 | NaN | S |
2 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
3 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26 | 0 | 0 | STON/O2. 3101282 | 7.925 | NaN | S |
4 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35 | 1 | 0 | 113803 | 53.1 | C123 | S |
data2 = pd.read_csv(r"G:\data\Kaggle\Titanic\train.csv",index_col=["Survived","Sex"])
data2.head()
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
PassengerId | Pclass | Name | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Survived | Sex | ||||||||||
0 | male | 1 | 3 | Braund, Mr. Owen Harris | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | female | 2 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
female | 3 | 3 | Heikkinen, Miss. Laina | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S | |
female | 4 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S | |
0 | male | 5 | 3 | Allen, Mr. William Henry | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
data3 = pd.read_csv(r"G:\data\Kaggle\Titanic\train.csv", skiprows=3, header=None) #包括表头的前三行被跳过了
data3.head()
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
1 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
2 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
3 | 6 | 0 | 3 | Moran, Mr. James | male | NaN | 0 | 0 | 330877 | 8.4583 | NaN | Q |
4 | 7 | 0 | 1 | McCarthy, Mr. Timothy J | male | 54.0 | 0 | 0 | 17463 | 51.8625 | E46 | S |
二.pd.to_csv()
作用:将数据框写入本地电脑,保存起来
先了解一下当前工作路径
import os
father_path = os.getcwd()
father_path
'C:\\Users\\acerpc'
to_csv(path_or_buf,sep,na_rep,columns,header,index)
参数解析:
1.path_or_buf:字符串,放文件名、相对路径、文件流等;
2.sep:字符串,分隔符,跟read_csv()的一个意思
3.na_rep:字符串,将NaN转换为特定值
4.columns:列表,指定哪些列写进去
5.header:默认header=0,如果没有表头,设置header=None,表示我没有表头呀!
6.index:关于索引的,默认True,写入索引
举栗子时间到:
import numpy as np
df = pd.DataFrame({"a":[1,2,3],
"b":[6,np.nan,6],
"c":[3,4,np.nan]})
df
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
a | b | c | |
---|---|---|---|
0 | 1 | 6.0 | 3.0 |
1 | 2 | NaN | 4.0 |
2 | 3 | 6.0 | NaN |
path1 = father_path + r'\df1.csv'
df.to_csv(path1)
path2 = father_path + r'\df2.csv'
df.to_csv(path2,header=None)
path3 = father_path + r'\df3.csv'
df.to_csv(path3, columns=["a","c"],index=False)
path4 = father_path + r'\df4.csv'
df.to_csv(path4, na_rep=0)
pd.read_csv() 、to_csv() 之 常用参数的更多相关文章
- pandas.read_csv to_csv参数详解
pandas.read_csv参数整理 读取CSV(逗号分割)文件到DataFrame 也支持文件的部分导入和选择迭代 更多帮助参见:http://pandas.pydata.org/pandas ...
- pd.read_csv参数解析
对pd.read_csv参数做如下解释: pandas.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', n ...
- [Python Study Notes]pd.read_csv()函数读取csv文件绘图
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...
- pd.read_csv操作读取分隔符csv和text文件
pandas.read_csv可以读取CSV(逗号分割)文件.文本类型的文件text.log类型到DataFrame 1. pandas.read_csv常用参数整理 也支持文件的部分导入和选择迭代 ...
- 使用read、readline、readlines和pd.read_csv、pd.read_table、pd.read_fwf、pd.read_excel获取数据
从文本文件读取数据 法一: 使用read.readline.readlines读取数据 read([size]):从文件读取指定的字节数.如果未给定或为负值,则去取全部.返回数据类型为字符串(将所有行 ...
- Production环境中iptables常用参数配置
production环境中iptables常用参数配置 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 我相信在实际生产环境中有很多运维的兄弟跟我一样,很少用到iptables的这个 ...
- chattr的常用参数详解
chattr的常用参数详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在实际生产环境中,有的运维工程师不得不和开发和测试打交道,在我们公司最常见的就是部署接口.每天每个人部署的 ...
- dmidecode常用参数
dmidecode常用参数详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. dmidecode这个命令真是神器啊,他能快速的获取服务器的硬件信息,而且这个命令有很多的花式玩法,今 ...
- find常用参数详解
find常用参数详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在linux系统中,在init 3模式情况下都是命令行模式,这个时候我们想要找到一个文件的就得依赖一个非常好用的 ...
随机推荐
- curl 错误总结
证书域名与访问的域名不一致 问题:curl SSL: certificate subject name 'luffichen_server.tencent.com' does not match ta ...
- 5分钟入门git模式开发
本文由云+社区发表 作者:唐维黎 导语 基于gui工具TortoiseGit让你快速进入git开发模式. 目前项目已逐步从svn移步到git开发模式,其中也针对git统一协议了适合git的开发规范, ...
- rpm和yum软件管理(week2_day5)--技术流ken
rpm简介 这是一个数据库管理工具,可以通过读取数据库,判断软件是否已经安装,如果已经安装可以读取出来所有文件的所在位置等,并可以实现删除这些文件. rpm:RPM is Redhat Package ...
- 关于setState的一些记录
在看React的官方文档的时候, 发现了这么一句话,State Updates May Be Asynchronous,于是查询了一波相关的资料, 最后归纳成以下3个问题 setState为什么要异步 ...
- AddressSanitizer简介
AddressSanitizer 是一个快速的内存错误检测工具,它由一个编译时插桩模块和一个运行库组成.该工具可以检测以下类型的错误: 堆.栈和全局变量的越界 UAF Use-After-Return ...
- 第16章 使用ASP.NET Core Identity - Identity Server 4 中文文档(v1.0.0)
注意 对于任何先决条件(例如模板),首先要查看概述. IdentityServer旨在提供灵活性,其中一部分允许您为用户及其数据(包括账户密码)使用所需的任何数据库.如果您从新的用户数据库开始,那么A ...
- Powerdesigner逆向工程64位Oracle数据库
Powerdesigner老版本不支持64位Client,新版本弄不到破解码 解决方法,用Powerdesigner+32位Oracle Clent访问64位Oracle Server 遇到的坑分享下 ...
- C# Redis 过期机制不生效问题
引用: https://ask.csdn.net/questions/358802 根据这里的代码写出监听事件后,事件并没有生效 在比对了多次配置文件后,终于发现了一点蹊跷,在配置中不能有与之相冲的配 ...
- C# 操作Word书签(二)——插入图片、表格到书签;读取、替换书签
概要 书签的设置可以帮助我们快速的定位某段文字,使用起来很方便,也很节省时间.在前一篇文章“C# 如何添加/删除Word书签”中介绍了插入.删除书签的方法,本篇文章将对C# 操作Word书签的功能做进 ...
- Java开发笔记(七十八)面向对象的后门——反射
作为一门面向对象的编程语言,Java认为一切皆是对象,每个对象都能归属于某个类,甚至每个类均可提取出一种特殊的类型,即Class类型.早在前面介绍多态的时候,就提到每个类都存在独一无二的基因,通过比较 ...