ORB-SLAM作为单目SLAM,其精度很大程度上决定于帧与帧之间的位姿优化的是否准确。因此优化(optimization)在ORB-SLAM里面扮演了很重要的角色。这一小节探讨一下ORB-SLAM里用到的优化。

ORB-SLAM选用g2o作为图优化的方法,关于g2o可以参考http://www.cnblogs.com/gaoxiang12/p/5304272.html

一、为什么要优化

因为摄像机标定(camera calibration)和追踪(tracking)的精度不够。摄像机标定的误差会体现在重建中(比如三角法重建时),而追踪的误差则会体现在不同关键帧之间的位姿中,和重建中(单目)。误差的不断累积会导致后面帧的位姿离实际位姿越来越远,最终会限制系统整体的精度。

1.1 摄像机标定

单目SLAM文献中一般假设摄像机标定的结果是准确的,并不考虑这个因素带来的误差(大概因为很多时候跑标准的数据集,认为摄像机标定的误差是相似的)。然而对于一个产品,不同类型的传感器对应的标定误差并不相同,甚至有可能差异很大。因此,如果要评估整个系统的精度,这方面的误差必须要考虑进去。

1.2 追踪

无论在单目、双目还是RGBD中,追踪得到的位姿都是有误差的。单目SLAM中,如果两帧之间有足够的对应点,那么既可以直接得到两帧之间的位姿(像初始化中那样),也可以通过求解一个优化问题得到(如solvePnP)。由于单目中尺度的不确定性,还会引入尺度的误差。由于tracking得到的总是相对位姿,前面某一帧的误差会一直传递到后面去,导致tracking到最后位姿误差有可能非常大。为了提高tracking的精度,可以1. 在局部和全局优化位姿;2. 利用闭环检测(loop closure)来优化位姿。

二、如何优化

2.1 优化的目标函数在SLAM问题中,常见的几种约束条件为: 1. 三维点到二维特征的映射关系(通过投影矩阵);2. 位姿和位姿之间的变换关系(通过三维刚体变换);3. 二维特征到二维特征的匹配关系(通过F矩阵);5. 其它关系(比如单目中有相似变换关系)。如果我们能够知道其中的某些关系是准确的,那么可以在g2o中定义这样的关系及其对应的残差,通过不断迭代优化位姿来逐步减小残差和,从而达到优化位姿的目标。

2.2 局部优化

当新的关键帧加入到convisibility graph时,作者在关键帧附近进行一次局部优化,如下图所示。Pos3是新加入的关键帧,其初始估计位姿已经得到。此时,Pos2是和Pos3相连的关键帧,X2是Pos3看到的三维点,X1是Pos2看到的三维点,这些都属于局部信息,共同参与Bundle Adjustment。同时,Pos1也可以看到X1,但它和Pos3没有直接的联系,属于Pos3关联的局部信息,参与Bundle Adjustment,但取值保持不变。Pos0和X0不参与Bundle Adjustment。

因此,参与优化的是下图中红色椭圆圈出的部分,其中红色代表取值会被优化,灰色代表取值保持不变。(u,v)是X在Pos下的二维投影点,即X在Pos下的测量(measurement)。优化的目标是让投影误差最小。

2.3 全局优化

在全局优化中,所有的关键帧(除了第一帧)和三维点都参与优化。

2.4 闭环处的Sim3位姿优化

当检测到闭环时,闭环连接的两个关键帧的位姿需要通过Sim3优化(以使得其尺度一致)。优化求解两帧之间的相似变换矩阵,使得二维对应点(feature)的投影误差最小。

如下图所示,Pos6和Pos2为一个可能的闭环。通过$(u_{4,2},v_{4,2})$和$(u_{4,6},v_{4,6})$之间的投影误差来优化$S_{6,2}$。

2.5 Sim3上的位姿优化

单目SLAM一般都会发生尺度(scale)漂移,因此Sim3上的优化是必要的。相对于SE3,Sim3的自由度要多一个,而且优化的目标是矫正尺度因子,因此优化并没有加入更多的变量(如三维点)。

作者在检测到闭环时在Sim3上对所有的位姿进行一次优化。定义Sim3上的残差如下:

$e_{i,j}=log_{Sim3}(S_{ij}S_{jw}S_{iw}^{-1})$

其中$S_{iw}$的初值是尺度为1的Pos i相对于世界坐标系的变换矩阵。$S_{i,j}$为Pos i和Pos j之间的(Sim3优化之前的)相对位姿矩阵,表示$S_{iw}$和$S_{jw}$之间的测量(measurement)。此处相当于认为局部的相对位姿是准确的,而全局位姿有累计误差,是不准确的。

三、小结

个人理解,单目SLAM中的优化需要更多技巧,要有明确的优化目标,要仔细权衡其中的参数选择、自由度、速度和稳定性。

该系列的其它文章:

ORB-SLAM(一)简介

ORB-SLAM(二)性能

ORB-SLAM(三)初始化

ORB-SLAM(四)追踪

ORB-SLAM(六)回环检测

ORB-SLAM(五)优化的更多相关文章

  1. SLAM图优化g2o

    SLAM图优化g2o 图优化g2o框架 图优化的英文是 graph optimization 或者 graph-based optimization, "图"其实是数据结构中的gr ...

  2. c json实战引擎五 , 优化重构

    引言 scjson是一个小巧的纯c跨平台小巧引擎. 适用于替换老的cJSON引擎的场景. 数据结构和代码布局做了大量改进.优势体现在以下几个方面: 1) 跨平台 (window 10 + VS2017 ...

  3. 从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码

    首发于公众号:计算机视觉life 旗下知识星球「从零开始学习SLAM」 这可能是最清晰讲解g2o代码框架的文章 理解图优化,一步步带你看懂g2o框架 小白:师兄师兄,最近我在看SLAM的优化算法,有种 ...

  4. [SLAM] 01. "Simultaneous Localization and Mapping"

    本篇带你认识SLAM,形成客观的认识和体系 一.通过行业招聘初步了解SLAM 发信人: leecty (Terry), 信区: ParttimeJobPost标 题: 创业公司招SLAM 算法工程师发 ...

  5. [SLAM] 01 "Simultaneous Localization and Mapping" basic knowledge

    发信人: leecty (Terry), 信区: ParttimeJobPost标 题: 创业公司招SLAM 算法工程师发信站: 水木社区 (Thu Jun 16 19:18:24 2016), 站内 ...

  6. (转) SLAM系统的研究点介绍 与 Kinect视觉SLAM技术介绍

          首页 视界智尚 算法技术 每日技术 来打我呀 注册     SLAM系统的研究点介绍 本文主要谈谈SLAM中的各个研究点,为研究生们(应该是博客的多数读者吧)作一个提纲挈领的摘要.然后,我 ...

  7. 最近一年语义SLAM有哪些代表性工作?

    点击"计算机视觉life"关注,置顶更快接收消息! 本文由作者刘骁授权发布,转载请联系原作者,个人主页http://www.liuxiao.org 目前 Semantic SLAM ...

  8. 当前的开源SLAM方案

    开源方案 传感器形式 地址链接 MonoSLAM 单目 https://github.com/hanmekim/SceneLib2  PTAM 单目  http://www.robots.ox.ac. ...

  9. 常用的SLAM解决方案

    ORB SLAM 可以去Github上自己搜索现成的SLAM程序包 在此基础上做优化 视觉SLAM的分类方法:按摄像头的多少分为单目和双目,按是否使用概率方法分为概率法和图法 链接 学习SLAM重要的 ...

  10. SLAM的现在与未来

    http://geek.csdn.net/news/detail/202128 作者:高翔,张涛,刘毅,颜沁睿. 编者按:本文节选自图书<视觉SLAM十四讲:从理论到实践>,系统介绍了视觉 ...

随机推荐

  1. vs2013\2015UML系列之-类图

    1.UML简介Unified Modeling Language (UML)又称统一建模语言或标准建模语言. 简单说就是以图形方式表现模型,根据不同模型进行分类,在UML 2.0中有13种图,以下是他 ...

  2. 浏览器对localstorage的支持情况以及localstorage在saas系统中的应用实践思考

    首先,还是要说,任何一种新特性的引入,通常有着其特有的场景和解决的目标需求,localstorage也一样.在我们的应用场景中,主要在金融业务服务的saas系统.其中涉及很多更改频率很多的元数据的客户 ...

  3. Linux网络查看命令

    1.ifconfig 查看当前生效的网卡. 2.ifdown ifup 网卡禁用与启动. 3.netstat -tuln 查看当前tcp/udp通讯端口连接情况. 4.netstat -an 查看当前 ...

  4. 很强大的HTML+CSS+JS面试题(附带答案)

    一.单项选择(165题) 1.HTML是什么意思? A)高级文本语言 B)超文本标记语言 C)扩展标记语言 D)图形化标记语言 2.浏览器针对于HTML文档起到了什么作用? A)浏览器用于创建HTML ...

  5. 中国式商业智能报表ActiveReports免费公开课,10月20日开讲

    ActiveReports公开课全方位报表解决方案,满足商业报表五大需求 [开课时间]10月20日[主讲老师]葡萄城报表产品经理[开课形式]网络在线公开课[活动费用]前50名免费 适合人群:报表开发人 ...

  6. bootstrap杂记

    http://v3.bootcss.com/ 这个国内的中文站点资料很全 如下看个页面的大体框架 http://www.cnblogs.com/sunhaoyu/p/4275190.html < ...

  7. android MD5加密

    public class MD5Uutils {    //MD5加密,32位    public static String MD5(String str) {        MessageDige ...

  8. 获取View的截图-将View转换为Bitmap对象

    开发中,有时候需要获取View的截图来做动画来达到动画流程的目的 原理:将View的内容画到一个Bitmap画布上,然后取出 下面封装了一个从View生成Bitmap的工具类 /** * 将View转 ...

  9. 架构从最简单的数据访问框架(ORM)到资源调度和治理中心(SOA)说起

    随着互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,亟需一个治理系统确保架构有条不紊的演进. 单一应用架构当网站流量很小时,只需一个应用,将 ...

  10. jQuery Validate 表单验证 — 用户注册简单应用

    相信很多coder在表单验证这块都是自己写验证规则的,今天我们用jQuery Validate这款前端验证利器来写一个简单的应用. 可以先把我写的这个小demo运行试下,先睹为快.猛戳链接--> ...