=======================================================================

SQL语句:

SELECT wave_no,
SUM(IF(picking_qty IS NULL, 0, picking_qty)) AS PICKED_QTY,
SUM(IF(differ_qty IS NULL, 0, differ_qty)) AS PICKED_DIFFER_QTY,
SUM(IF(relocate_qty IS NULL, 0, relocate_qty)) AS PICKED_RELOCATE_QTY FROM picking_locate_d
WHERE yn = 0
AND wave_no IN
(
'BC76361213164811',
'BC76361213164810',
'BC76361213154684',
'BC76361213155125'
)
AND org_No= '661'
AND distribute_No = '763'
AND warehouse_No = '612'
GROUP BY wave_no;

执行计划:

+----+-------------+------------------+------------+-------+---------------+-------------+---------+------+-------+----------+------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------------+------------+-------+---------------+-------------+---------+------+-------+----------+------------------------------------+
| 1 | SIMPLE | picking_locate_d | NULL | range | idx_wave_no | idx_wave_no | 153 | NULL | 16000 | 0.10 | Using index condition; Using where |
+----+-------------+------------------+------------+-------+---------------+-------------+---------+------+-------+----------+------------------------------------+

执行计划JOSN:

EXPLAIN: {
"query_block": {
"select_id": 1,
"cost_info": {
"query_cost": "9548371.80"
},
"grouping_operation": {
"using_filesort": false,
"table": {
"table_name": "picking_locate_d",
"access_type": "index",
"possible_keys": [
"idx_wave_no"
],
"key": "idx_wave_no",
"used_key_parts": [
"wave_no"
],
"key_length": "153",
"rows_examined_per_scan": 37518548,
"rows_produced_per_join": 1875,
"filtered": "0.01",
"cost_info": {
"read_cost": "9547996.61",
"eval_cost": "375.19",
"prefix_cost": "9548371.80",
"data_read_per_join": "11M"
},
"used_columns": [
"id",
"wave_no",
"picking_qty",
"differ_qty",
"relocate_qty",
"org_no",
"distribute_no",
"warehouse_no",
"yn"
],
"attached_condition": "(
(`report`.`picking_locate_d`.`yn` = 0)
and (`report`.`picking_locate_d`.`wave_no` in ('BC76361213164811','BC76361213164810','BC76361213155124','BC76361213154684','BC76361213155125'))
and (`report`.`picking_locate_d`.`org_no` = '661')
and (`report`.`picking_locate_d`.`distribute_no` = '763')
and (`report`.`picking_locate_d`.`warehouse_no` = '612')
)"
}
}
}
}

=======================================================================

将wave_no IN修改为CONCAT(wave_no,'') IN进行测试

SQL语句:

SELECT wave_no,
SUM(IF(picking_qty IS NULL, , picking_qty)) AS PICKED_QTY,
SUM(IF(differ_qty IS NULL, , differ_qty)) AS PICKED_DIFFER_QTY,
SUM(IF(relocate_qty IS NULL, , relocate_qty)) AS PICKED_RELOCATE_QTY FROM picking_locate_d
WHERE yn =
AND CONCAT(wave_no,'') IN
(
'BC76361213164811',
'BC76361213164810',
'BC76361213154684',
'BC76361213155125'
)
AND org_No= ''
AND distribute_No = ''
AND warehouse_No = ''
GROUP BY wave_no

执行计划:

+----+-------------+------------------+------------+-------+---------------+-------------+---------+------+----------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------------+------------+-------+---------------+-------------+---------+------+----------+----------+-------------+
| | SIMPLE | picking_locate_d | NULL | index | idx_wave_no | idx_wave_no | | NULL | | 0.01 | Using where |
+----+-------------+------------------+------------+-------+---------------+-------------+---------+------+----------+----------+-------------+

执行计划JSON:

EXPLAIN: {
"query_block": {
"select_id": ,
"cost_info": {
"query_cost": "9549155.40"
},
"grouping_operation": {
"using_filesort": false,
"table": {
"table_name": "picking_locate_d",
"access_type": "index",
"possible_keys": [
"idx_wave_no"
],
"key": "idx_wave_no",
"used_key_parts": [
"wave_no"
],
"key_length": "",
"rows_examined_per_scan": ,
"rows_produced_per_join": ,
"filtered": "0.01",
"cost_info": {
"read_cost": "9548404.95",
"eval_cost": "750.45",
"prefix_cost": "9549155.40",
"data_read_per_join": "22M"
},
"used_columns": [
"id",
"wave_no",
"picking_qty",
"differ_qty",
"relocate_qty",
"org_no",
"distribute_no",
"warehouse_no",
"yn"
],
"attached_condition": "(
(`report`.`picking_locate_d`.`yn` = )
and (concat(`report`.`picking_locate_d`.`wave_no`,'') in ('BC76361213164811','BC76361213164810','BC76361213154684','BC76361213155125'))
and (`report`.`picking_locate_d`.`org_no` = '')
and (`report`.`picking_locate_d`.`distribute_no` = '')
and (`report`.`picking_locate_d`.`warehouse_no` = '')
)"
}
}
}
}

=======================================================================

去除org_No/distribute_No/warehouse_No任意列的过滤条件,如去除AND org_No= '661'

SQL语句

SELECT wave_no,
SUM(IF(picking_qty IS NULL, , picking_qty)) AS PICKED_QTY,
SUM(IF(differ_qty IS NULL, , differ_qty)) AS PICKED_DIFFER_QTY,
SUM(IF(relocate_qty IS NULL, , relocate_qty)) AS PICKED_RELOCATE_QTY FROM picking_locate_d
WHERE yn =
AND wave_no IN
(
'BC76361213164811',
'BC76361213164810',
'BC76361213154684',
'BC76361213155125'
)
## AND org_No= ''
AND distribute_No = ''
AND warehouse_No = ''
GROUP BY wave_no;

执行计划:

+----+-------------+------------------+------------+-------+---------------+-------------+---------+------+----------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------------+------------+-------+---------------+-------------+---------+------+----------+----------+-------------+
| | SIMPLE | picking_locate_d | NULL | index | idx_wave_no | idx_wave_no | | NULL | | 0.01 | Using where |
+----+-------------+------------------+------------+-------+---------------+-------------+---------+------+----------+----------+-------------+

执行计划JSON

EXPLAIN: {
"query_block": {
"select_id": ,
"cost_info": {
"query_cost": "38400.01"
},
"grouping_operation": {
"using_filesort": false,
"table": {
"table_name": "picking_locate_d",
"access_type": "range",
"possible_keys": [
"idx_wave_no"
],
"key": "idx_wave_no",
"used_key_parts": [
"wave_no"
],
"key_length": "",
"rows_examined_per_scan": ,
"rows_produced_per_join": ,
"filtered": "0.10",
"index_condition": "(
(`report`.`picking_locate_d`.`wave_no` in ('BC76361213164811','BC76361213164810','BC76361213154684','BC76361213155125'))
and (`report`.`picking_locate_d`.`distribute_no` = '')
and (`report`.`picking_locate_d`.`warehouse_no` = '')
)",
"cost_info": {
"read_cost": "38396.81",
"eval_cost": "3.20",
"prefix_cost": "38400.01",
"data_read_per_join": "98K"
},
"used_columns": [
"id",
"wave_no",
"picking_qty",
"differ_qty",
"relocate_qty",
"org_no",
"distribute_no",
"warehouse_no",
"yn"
],
"attached_condition": "(`report`.`picking_locate_d`.`yn` = 0)"
}
}
}
}

MySQL Execution Plan--IN子查询包含超多值引发的查询异常1的更多相关文章

  1. MySQL Execution Plan--IN子查询包含超多值引发的查询异常

    问题描述 版本:MySQL 5.7.24 SQL语句: SELECT wave_no, SUM(IF(picking_qty IS NULL, 0, picking_qty)) AS PICKED_Q ...

  2. MySQL Execution Plan--NOT EXISTS子查询优化

    在很多业务场景中,会使用NOT EXISTS语句来确保返回数据不存在于特定集合,部分场景下NOT EXISTS语句性能较差,网上甚至存在谣言"NOT EXISTS无法走索引". 首 ...

  3. query_string查询支持全部的Apache Lucene查询语法 低频词划分依据 模糊查询 Disjunction Max

    3.3 基本查询3.3.1词条查询 词条查询是未经分析的,要跟索引文档中的词条完全匹配注意:在输入数据中,title字段含有Crime and Punishment,但我们使用小写开头的crime来搜 ...

  4. Mysql查询优化器之关于子查询的优化

    下面这些sql都含有子查询: mysql> select * from t1 where a in (select a from t2); mysql> select * from (se ...

  5. MySQL(八)子查询和分组查询

    一.子查询 1.子查询(subquery):嵌套在其他查询中的查询. 例如:select user_id from usertable where mobile_no in (select mobil ...

  6. MySQL之多表查询一 介绍 二 多表连接查询 三 符合条件连接查询 四 子查询 五 综合练习

    MySQL之多表查询 阅读目录 一 介绍 二 多表连接查询 三 符合条件连接查询 四 子查询 五 综合练习 一 介绍 本节主题 多表连接查询 复合条件连接查询 子查询 首先说一下,我们写项目一般都会建 ...

  7. 为什么MySQL不推荐使用子查询和join

    前言: 1.对于mysql,不推荐使用子查询和join是因为本身join的效率就是硬伤,一旦数据量很大效率就很难保证,强烈推荐分别根据索引单表取数据,然后在程序里面做join,merge数据. 2.子 ...

  8. MySQL中 如何查询表名中包含某字段的表 ,查询MySql数据库架构信息:数据库,表,表字段

    --查询tablename 数据库中 以"_copy" 结尾的表 select table_name from information_schema.tables where ta ...

  9. mysql update不支持子查询更新

    先看示例: SELECT uin,account,password,create_user_uin_tree FROM sys_user 结果: 表中的create_user_uin_tree标识该条 ...

随机推荐

  1. 1 实现添加功能 1.1 定义一个学员类(Student),在Student类中定义姓名、性别和年龄属性,定义有 参数的构造方法来初始化所以的成员属性 1.2 创建学员类对象来存放学员信息,并且为每一个学生对象添加的相应的编号。并将 学员类对象添加到Map<Integer,Student>集合中 1.3 添加完成后,显示所有已添加的学员姓名 1.4 限制年龄文本框只能输入正整数,否则的会采

    学生类 package com.lanxi.demo1_3; public class Student { private String name; private String sex; priva ...

  2. Vue+elementui +Springboot session丢失解决方案

    前后端分离项目   由于端口不一致会出现跨域问题   解决跨域以后又会出现前后端sessionID不一致 首先跨域问题    跨域可以在前端配置代理 proxyTable: { '/': {    / ...

  3. 菜鸟python之路-第五章(记录读书点滴)

    数字 1.数字类型 python支持多种数字类型:整型.长整型.布尔型.双精度浮点型.十进制浮点型和复数 . 创建数值对象并赋值 aint=1 along=-999999999999999L aflo ...

  4. python基础15上_迭代器_生成器

    # 迭代器和生成器 # 迭代器: # 双下方法 : 很少直接调用的方法.一般情况下,是通过其他语法触发的 # 可迭代的 —— 可迭代协议 含有__iter__的方法('__iter__' in dir ...

  5. 第二次scrum冲刺

    一.第二次冲刺任务         Scrum是在已有的基础上实现读者查询书籍的功能. 二.用户故事         用户输入账号.密码   用户输入需要查询的书籍   系统显示用户输入的信息的详细信 ...

  6. vimrc配置

    "=========================================================================" DesCRiption 适合 ...

  7. 实际操作中遇到的问题--Django中查看已安装的包的相关命令

    pip freeze  --------查看已经安装的包 pip uninstall 安装包名 ---------卸载已安装的包 pip install 安装包名--------安装包

  8. WEB学习笔记10-高可读性的HTML之HTML 语义化

    实现如下所示工具栏: 做到标签语义化,首先要尽量减少使用<div>和<span>这两个标签. 分析:这是一个包含5个无序操作项的工具栏,因此应该使用符合语义的<ul> ...

  9. Python爬虫--简单的单词查询

    Refer to: https://github.com/gaopu/Python/blob/master/Dict.py 本程序参考自上面Github连接 该程序功能是输入一个单词可以给出这个单词的 ...

  10. phoneshop cs6破解

    一.以“试用”方式安装photoshop: 二.下载amtlib.dll破解文件,密码:ubx2: 三.备份photoshop目录下的amtlib.dll文件,将下载的amtlib.dll文件拷贝到p ...