link

题意

设 \(\text{sum}(i)\) 表示 \(i\) 的二进制表示中 \(1\) 的个数。给出一个正整数 \(N\) ,求 \(\prod_{i=1}^{N}\text{sum}(i)\) 。

思路

换一种角度看这个乘积,会发现就相当于统计出 \(1\sim N\) 中 1 的个数为 \(k\) 的数量 \(cnt_k\) ,然后 \(\prod k^{cnt_k}\) 即可。

(怎么那么水啊,这都什么垃圾紫题,题白挑了)为了让这道题更有价值,代码实现非常的神仙。Orz粉兔。

粉兔的代码看了很久才理解……luogu上至今没有看到公开的详解。

这里注释的是我认为正确的理解,若有差错还请指正。

代码

#include <cstdio>
#define ll long long
const ll mod=1e7+7;
ll n,ans=1,cnt,f[50]; ll power( ll a,ll b )
{
ll res=1;
for ( ; b; b>>=1,a=a*a%mod )
if ( b&1 ) res=res*a%mod;
return res;
} int main()
{
scanf( "%lld",&n ); cnt=0; f[0]=0;
for ( int len=49; ~len; --len )
{
for ( int i=49; i; --i )
f[i]+=f[i-1];
if ( n>>len&1 ) f[cnt]++,cnt++;
//cnt记录的是除了现在这一位,之前有的1的个数,f[cnt]++表示,这一位的1产生了一种使得前面的1全部能取到的方案。
}
f[cnt]++; //加上本身
//之前一直想不明白,如果这样枚举,为什么能直接从49开始。
//一开始的想法是预支最高位的1,这样当前每次加一位就能取1,对应 f[i-1] 到 f[i] 的转移
//但是这样有个问题,就是最高位没有1了怎么办,这样预支无效,答案就会偏大
//后来发现,关键在外层循环。当位数大于二进制下n的位数的时候,f始终为0,最后一句if 不会执行,也就不会出现上述问题。
//一旦开始累加出现了值,那么一定就是有高位可以预支了。否则 if 中的等号不会成立。
for ( int i=1; i<=49; ++i )
ans=ans*power( i,f[i] )%mod; printf( "%lld",ans );
return 0;
}

P4317 花神的数论题,关于luogu题解粉兔做法的理解的更多相关文章

  1. 洛谷 P4317 花神的数论题(组合数)

    题面 luogu 题解 组合数 枚举有多少个\(1\),求出有多少种数 扫描\(n\)的每一位\(1\), 强制选\(0\)然后组合数算一下有多少种方案 Code #include<bits/s ...

  2. Luogu P4317 花神的数论题

    也是一道不错的数位DP,考虑先转成二进制后再做 转化一下问题,考虑统计出\([1,n]\)中在二进制下有\(i\)个\(1\)的方案数\(cnt_i\),那么答案显然就是\(\prod i^{cnt_ ...

  3. 洛谷 P4317 花神的数论题 || bzoj3209

    https://www.lydsy.com/JudgeOnline/problem.php?id=3209 https://www.luogu.org/problemnew/show/P4317 设c ...

  4. P4317 花神的数论题 dp

    这题我一开始就想到数位dp了,其实好像也不是很难,但是自己写不出来...常规套路,f[i][j][k][t],从后往前填数,i位,j代表是否卡着上沿,k是现在有几个1,t是想要有几个.记忆化搜索就ok ...

  5. DP,数论————洛谷P4317 花神的数论题(求1~n二进制中1的个数和)

    玄学代码(是洛谷题解里的一位dalao小粉兔写的) //数位DP(二进制)计算出f[i]为恰好有i个的方案数. //答案为∏(i^f[i]),快速幂解决. #include<bits/stdc+ ...

  6. P4317 花神的数论题 动态规划?数位DP

    思路:数位$DP$ 提交:5次(其实之前A过,但是调了调当初的程序.本次是2次AC的) 题解: 我们分别求出$sum(x)=i$,对于一个$i$,有几个$x$,然后我们就可以快速幂解决. 至于求个数用 ...

  7. P4317 花神的数论题

    题目 洛谷 数学方法学不会%>_<% 做法 爆搜二进制下存在\(i\)位\(1\)的情况,然后快速幂乘起来 My complete code #include<bits/stdc++ ...

  8. 洛谷P4317 花神的数论题

    洛谷题目链接 数位$dp$ 我们对$n$进行二进制拆分,于是就阔以像十进制一样数位$dp$了,基本就是套模板.. 接下来是美滋滋的代码时间~~~ #include<iostream> #i ...

  9. 【洛谷】4317:花神的数论题【数位DP】

    P4317 花神的数论题 题目背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 题目描述 话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我 ...

随机推荐

  1. 调试没有core文件的coredump

    对coredump的分析中,是依赖于core文件的,而core文件中也几乎包含了程序当前的所有状态(堆栈.内存.寄存器等).然而在实际的线上环境中,由于core文件太大.保存core文件耗时太久,出于 ...

  2. 402. 移掉K位数字

    给定一个以字符串表示的非负整数 num,移除这个数中的 k 位数字,使得剩下的数字最小. 注意: num 的长度小于 10002 且 ≥ k.num 不会包含任何前导零.示例 1 : 输入: num ...

  3. python之深浅copy与id

    我们都知道 所谓变量就是就是在空间中开辟一块内存空间.来存放东西的 学过c语言的都知道而数组也是有内存地址的 我们如何来查看内存地址呢?id()这函数就来了 x = 5 print(id(x)) 如此 ...

  4. JAVA注解的继承性

    摘要 本文从三个方面介绍java注解的**"继承性"**: 基于元注解@Inherited,类上注解的继承性 基于类的继承,方法/属性上注解的继承性 基于接口的继承/实现,方法/属 ...

  5. 1-03 Java的基本程序设计结构

    1-03 Java的基本程序设计结构 3.1 & 3.2 在一个单词中间使用大写字母的方式称为骆驼命名法.以其自身为例,应该写成CamelCase). 与C/C++一样,关键字void表示这个 ...

  6. 【原创】Linux虚拟化KVM-Qemu分析(六)之中断虚拟化

    背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: KVM版本:5.9 ...

  7. hectf2020部分简单题题解wp

    HECTF 我真是又菜又没时间肝题..又又又只水了波简单题... Reverse 1.Hello_Re file查一波 32bit,拖进IDA中 老规矩shift+F12 查看字符串: 跳转 F5查看 ...

  8. 深度分析:Java虚拟机类加载机制、过程与类加载器

    虚拟机类加载机制是把描述类的数据从 Class 文件加载到内存,并对数据进行校验.转换解析和初始化,最终形成可以被虚拟机直接使用的 Java 类型. ​ 需要注意的是 Java 语言与其他编译时需要进 ...

  9. mac实用软件推荐 mac好用的软件

    终于入手了梦寐以求的苹果电脑,但却发现其操作系统与Windows大相径庭!不会使用怎么办?不用担心,我们可以借助软件的力量.一款实用的Mac软件不仅能够使你的工作效率显著提高,同时它还能帮助你更快地熟 ...

  10. 从这三方面优化你的电脑,保持Mac运行流畅

    使用着Mac系统的用户都知道,Mac OS的各方面性能都很好,特别是流畅性,有人说不用清理垃圾也能流畅地使用Mac,但这的确是夸张了.电脑使用的时间长了,它的性能总会越来越退步,这其中有着系统垃圾拖累 ...