【小白学PyTorch】16 TF2读取图片的方法
【新闻】:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测、医学图像、NLP等多个学术交流分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会。微信:cyx645016617.
参考目录:
本文的代码已经上传公众号后台,回复【PyTorch】获取。
1 PIL读取图片
想要把一个图片,转换成RGB3通道的一个张量,我们怎么做呢?大家第一反应应该是PIL这个库吧
from PIL import Image
import numpy as np
image = Image.open('./bug1.jpg')
image.show()
展示的图片:
然后我们这个image现在是PIL格式的,我们使用numpy.array()来将其转换成numpy的张量的形式:
image = np.array(image)
print(image.shape)
>>>(326, 312, 3)
可以看到,这个第三维度是3。对于pytorch而言,数据的第一维度应该是样本数量,第二维度是通道数,第三四是图像的宽高,因此PIL读入的图片,往往需要把通道数的这个维度移动到第二维度上才能对接上pytorch的形式。(transpose方法来实现这个功能,这里不细说)
2 TF读取图片
下面是重点啦,对于tensorflow,tf中自己带了一个解码函数,先看一下我的文件目录:
import tensorflow as tf
images = tf.io.gfile.glob('./*.jpeg')
print(images,type(images))
> ['.\\bug1.jpeg', '.\\bug2.jpeg'] <class 'list'>
可以看出来:
- 这个
tensorflow.io.gfile.glob()是读取路径下的所有符合条件的文件,并且把路径做成一个list返回; - 这个功能也可以用glob库函数实现,我记得是
glob.glob()方法; - 这里的bug1和bug2其实是同一张图片,都是上面的那个小兔子。
image = tf.io.read_file('./bug1.jpeg')
image = tf.image.decode_jpeg(image,channels=3)
print(image.shape,type(image))
> (326, 312, 3) <class 'tensorflow.python.framework.ops.EagerTensor'>
需要注意的是:
tf.io.read_file()这个得到的返回值是二进制格式,所以需要下面的tf.image.decode_jpeg进行一个解码;decode_jpeg的第一个参数就是读取的二进制文件,然后channels是输出的图片的通道数,3就是RPB三个通道,如果是1的话,就是灰度图片,ratio是图片大小的一个缩小比例,默认是1,可以是2和4,一会看一下ratio=2的情况;- 这个image的type是一个tensorflow特别的Tensor的形式,而不是pytorch的那种tensor的形式了。
image = tf.io.read_file('./bug1.jpeg')
image = tf.image.decode_jpeg(image,channels=1,ratio=2)
print(image.shape,type(image))
> (163, 156, 1) <class 'tensorflow.python.framework.ops.EagerTensor'>
宽高都变成了原来的一半,然后通道数是1,都和预想的一样。使用decode_jpeg等解码函数得到的结果,是uint8的类型的,简单地说就是整数,0到255范围的。在对图片进行操作的时候,我们需要将其标准化到0到1区间的,因此需要将其转换成float32类型的。所以对上述代码进行补充:
image = tf.io.read_file('./bug1.jpeg')
image = tf.image.decode_jpeg(image,channels=1,ratio=2)
print(image.shape,type(image))
image = tf.image.resize(image,[256,256]) # 统一图片大小
image = tf.cast(image,tf.float32) # 转换类型
image = image/255 # 归一化
print(image)
从结果来看,数据类型已经改变:
3 TF构建数据集
下面是dataset更正式的写法,关于TF2的问题,不要百度!百度到的都是TF1的解答,看的我晕死了,TF的API的结构真是不太友好。。。
def read_image(path):
image = tf.io.read_file(path)
image = tf.image.decode_jpeg(image, channels=3, ratio=1)
image = tf.image.resize(image, [256, 256]) # 统一图片大小
image = tf.cast(image, tf.float32) # 转换类型
image = image / 255 # 归一化
return image
images = tf.io.gfile.glob('./*.jpeg')
dataset = tf.data.Dataset.from_tensor_slices(images)
AUTOTUNE = tf.data.experimental.AUTOTUNE
dataset = dataset.map(read_image,num_parallel_calls=AUTOTUNE)
dataset = dataset.shuffle(1).batch(1)
for a in dataset.take(2):
print(a.shape)
代码中需要注意的是:
- glob获取一个文件的list,本次就两个文件名字,一个bug1.jpeg,一个bug2.jpeg;
tf.data.Dataset.from_tensor_slices()返回的就是一个tensorflow的dataset类型,可以简单理解为一个可迭代的list,并且有很多其他方法;dataset.map就是用实现定义好的函数,对处理dataset中每一个元素,在上面代码中是把路径的字符串变成该路径读取的图片张量,对图片的预处理应该也在这部分进行吧;- dataset.shuffle就是乱序,
.batch()就是把dataset中的元素组装batch; - 在获取dataset中的元素的时候,TF1中有什么迭代器的定义啊,什么iter,但是TF2不用这些,直接
.take(num)就行了,这个num就是从dataset中取出来的batch的数量,也就是循环的次数吧。 AUTOTUNE = tf.data.experimental.AUTOTUNE就是根据你的cpu的情况,自动判断多线程的数量。
上面代码的输出结果为:
【小白学PyTorch】16 TF2读取图片的方法的更多相关文章
- 【小白学PyTorch】20 TF2的eager模式与求导
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...
- 【小白学PyTorch】17 TFrec文件的创建与读取
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...
- 【小白学PyTorch】3 浅谈Dataset和Dataloader
文章目录: 目录 1 Dataset基类 2 构建Dataset子类 2.1 Init 2.2 getitem 3 dataloader 1 Dataset基类 PyTorch 读取其他的数据,主要是 ...
- 【小白学PyTorch】7 最新版本torchvision.transforms常用API翻译与讲解
文章来自:微信公众号[机器学习炼丹术].欢迎关注支持原创 也欢迎添加作者微信:cyx645016617. 参考目录: 目录 1 基本函数 1.1 Compose 1.2 RandomChoice 1. ...
- 【小白学PyTorch】18 TF2构建自定义模型
[机器学习炼丹术]的炼丹总群已经快满了,要加入的快联系炼丹兄WX:cyx645016617 参考目录: 目录 1 创建自定义网络层 2 创建一个完整的CNN 2.1 keras.Model vs ke ...
- 【小白学PyTorch】19 TF2模型的存储与载入
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...
- 【小白学PyTorch】15 TF2实现一个简单的服装分类任务
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...
- 【小白学PyTorch】5 torchvision预训练模型与数据集全览
文章来自:微信公众号[机器学习炼丹术].一个ai专业研究生的个人学习分享公众号 文章目录: 目录 torchvision 1 torchvision.datssets 2 torchvision.mo ...
- 【小白学PyTorch】8 实战之MNIST小试牛刀
文章来自微信公众号[机器学习炼丹术].有什么问题都可以咨询作者WX:cyx645016617.想交个朋友占一个好友位也是可以的~好友位快满了不过. 参考目录: 目录 1 探索性数据分析 1.1 数据集 ...
随机推荐
- Windows servers 2008 环境下,域控DC和DNS,分离搭建过程。
近来做有关于window服务器方面运维的实验,正好借此记录下来,便于日后回顾. 通常情况下,域控DC服务器和DNS服务器一般不在一起,所以需要将其分开建立.而这个时候两个服务器的建立有先后顺序,本文会 ...
- day40:python操作mysql:pymysql模块&SQL注入攻击
目录 part1:用python连接mysql 1.用python连接mysql的基本语法 2.用python 创建&删除表 3.用python操作事务处理 part2:sql注入攻击 1.s ...
- 新手学习seo写原创文章的方法
http://www.wocaoseo.com/thread-102-1-1.html 前两天都是写自己公司克拉玛依电信公司年终活动和总结的事,今天继续学习seo技术,其实说难也难说容易也容易,关键的 ...
- 我是怎样刚拿饿了么P7 offer,然后途虎一轮游的
今年初拿了个饿了么P7的offer,于此同时大家顺便看看我怎么途虎一轮游的.废话不多说,直接上题吧. 一面 首先上来就是自我介绍,简单的说下自己的项目经验,涉及的技术栈之类的. 然后每一轮必问的问题来 ...
- 基于postman的api自动化测试实践
测试的好处 每个人都同意测试很重要,但并不是所有人都会去做.每当你添加新的代码,测试可以保证你的api按照预期运行.通过postman,你可以为所有api编写和运行测试脚本. postman中的测试 ...
- Apache Tika实战
Apache Tika实战 Tika 简介 Apache Tika 是一个内容分析工具包,可以检测上千种文件类型,并提取它们的元数据和文本.tika在设计上十分精巧,单一的接口使它易于使用,在搜索引擎 ...
- Redis操作及集群搭建以及高可用配置
NoSQL - Redis 缓存技术 Redis功能介绍 数据类型丰富 支持持久化 多种内存分配及回收策略 支持弱事务 支持高可用 支持分布式分片集群 企业缓存产品介绍 Memcached: 优点:高 ...
- 复制一个Python全部环境到另一个环境
导出此环境下安装的包的版本信息清单 pip freeze > requirements.txt 联网,下载清单中的包到all-packet文件夹 [root@localhost ~]# p ...
- 小程序开发-小程序tabBar不显示的原因分析
在尝试小程序开发时,tabBar这个是个非常常见的组件,但是今天在进行开发时,设置了TabBarb并没有显示,被这个问题困扰了近半小时,现在将排查问题后所得到的经验记录下来. 首先 如果tabBar不 ...
- 剑指 Offer 49. 丑数
题目描述 我们把只包含质因子 2.3 和 5 的数称作丑数(Ugly Number).求按从小到大的顺序的第 n 个丑数. 示例: 输入: n = 10 输出: 12 解释: 1, 2, 3, 4, ...