【python接口自动化】- DDT数据驱动测试
简单介绍
DDT(Date Driver Test),所谓数据驱动测试,简单来说就是由数据的改变从而驱动自动化测试的执行,最终引起测试结果的改变。通过使用数据驱动测试的方法,可以在需要验证多组数据测试场景中,使用外部数据源实现对输入输出与期望值的参数化,避免在测试中使用硬编码的数据,也就是测试数据和用例脚本代码分离。
DDT它其实就是一个装饰器,它会根据你传递进来的数据来决定要生成几个测试用例。
使用的意义
1.代码复用率高:一个测试逻辑只需要写一次,可以多条测试数据复用,同时提高测试脚本的编写效率。
2.异常排查效率高:根据测试数据,每条数据生成一条测试用例,用例相互分离,一条失败的情况下不会影响其他测试用例。
3.代码可维护性高:简洁明了的测试框架,利于其他同事阅读,提高代码的可维护性。
安装及导入
cmd命令行执行安装:pip install ddt
直接导入到模块:import ddt,或导入具体的装饰器:from ddt import ddt, data,unpack
ddt使用详解
三个要点:
@ddt:装饰测试类@data:装饰测试用例@unpack:装饰测试用例
要使用ddt的前提是要有测试用例类,然后用@ddt去装饰测试用例类,用@data(测试数据)去装饰测试用例,如下登录接口例子:
from ddt import ddt, data
from common.read_excel import ReadExcel
from common.my_logger import log
@ddt # 装饰登录测试用例类,声明使用ddt
class LoginTestCase(unittest.TestCase):
excel = ReadExcel("cases.xlsx", "login")
cases = excel.read_data()
@data(*cases) # 装饰测试用例
def test_login(self, case):
case_data = eval(case["data"])
expected = eval(case["expected"])
case_id = case["case_id"]
result = login_check(*case_data)
response = self.http.send(url=url, method=method, json=data, headers=headers)
result = response.json()
try:
self.assertEqual(expected["code"], result["code"])
self.assertEqual((expected["msg"]), result["msg"])
except AssertionError as e:
log.info("用例:{}--->执行未通过".format(case["title"]))
print("预期结果:{}".format(expected))
print("实际结果:{}".format(result))
raise e
else:
log.info("用例:{}--->执行通过".format(case["title"]))
if __name__ == '__main__':
unittest.main()
@ddt它做的事情其实就等同于这句代码:LoginTestCase = ddt(LoginTestCase),把具体的类名传给ddt,告诉ddt是这个测试用例类要使用数据驱动。
@data做的事情就是把测试数据作为一个参数传递给测试用例,一个数据对应生成一条测试用例,如果data里面有多个数据那么就对应生成多条测试用例。如果data里放的类似是元组、列表等这样的序列类型的数据,data会把他们当成是一个整体,即一个测试数据。
如果想一次传递多个参数给测试用例,需要自行在脚本中对数据进行分解或者使用@unpack分解数据。如上例子中的测试用例,只使用了一个参数,但这个参数case是一个字典,字典中已经包含多个数据,直接用key获取对应的值即可。@unpack则是可以把序列类型的数据拆分为多个,以多个参数传给测试用例,但测试用例也需要定义同等数量的参数来接收。
上面例子的测试数据cases来源是使用了openpyxl来读取excel中的测试数据的,关于openpyxl可以看我这个系列的另外一篇随笔。这里直接说明cases其实就是像下面这样的一个列表:
cases = [{'case_id': 1, 'title': '正常登录', 'data': '("test", "Test1234")', 'expected': '{"code": 0, "msg": "登录成功"}'}, {'case_id': 2, 'title': '密码错误', 'data': '("test", "123")', 'expected': '{"code": 1, "msg": "账号或密码不正确"}'}, {'case_id': 3, 'title': '账户名错误', 'data': '("test11", "Test1234")', 'expected': '{"code": 1, "msg": "账号或密码不正确"}'}]
# *解包后,一个字典就是一个测试用例数据
# 如第一个字典:{'case_id': 1, 'title': '正常登录', 'data': '("test", "Test1234")', 'expected': '{"code": 0, "msg": "登录成功"}'}
通过*解包,它的数据就是3个字典,每次给测试用例传入1个字典,而这个字典里就存放了一条完整的登录接口测试用例的测试数据,包括用例id、用例标题、测试的账号密码、期望返回的结果。
小结:
- @data(a,b):a和b各运行一次用例
- @data(*(a,b):a和b各运行一次用例,使用*解包,相当于@data(a,b)
- @data([a,d],[c,d])
- 如果没有
@unpack[a,b]、[c,d]都会被当成一个参数传入用例,即用[a,b]运行一次,用[c,d]运行一次; - 如果有
@unpack,[a,b]会被分解开,一次传递两个参数给用例,用例需要定义两个参数接收 @unpack可适用元组、列表或字典,但当传入的是字典时,字典的key和用例定义的参数名需要保持一致
- 如果没有
扩展
关键代码:@file_data,传递文件(json/yaml)
# 传递json
"""
json文件数据
{
"token":123456,
"actionName": "api.login",
"content": {
"user": "miki",
"pwd": "Test123"
}
}
"""
"""
yaml文件
test_list:
- 11
- 22
- 12
sorted_list: [ 11, 12, 22 ]
"""
from ddt import *
@ddt # 声明使用ddt
class TestFile(unittest.TestCase):
@file_data('D:/test/test.json')
def test_json(self, json_data):
print(json_data)
@file_data('D:/test/test.yaml')
def test_yaml(self, yaml_data):
print("yaml", yaml_data)
【python接口自动化】- DDT数据驱动测试的更多相关文章
- python接口自动化9-ddt数据驱动
前言 ddt:数据驱动,说的简单一点,就是多组测试数据,比如点点点的时候登录输入正常.异常的数据进行登录. 实际项目中,自动化测试用得很少,但也有人用excel来维护测试数据 一.ddt 1.安装:p ...
- python Unittest+excel+ddt数据驱动测试
#!user/bin/env python # coding=utf- # @Author : Dang # @Time : // : # @Email : @qq.com # @File : # @ ...
- 2020年第二期《python接口自动化+测试开发》课程,已开学!
2020年第二期<python接口自动化+python测试开发>课程,12月15号开学! 主讲老师:上海-悠悠 上课方式:QQ群视频在线教学,方便交流 本期上课时间:12月15号-3月29 ...
- python接口自动化28-requests-html爬虫框架
前言 requests库的好,只有用过的人才知道,最近这个库的作者又出了一个好用的爬虫框架requests-html.之前解析html页面用过了lxml和bs4, requests-html集成了一些 ...
- python接口自动化24-有token的接口项目使用unittest框架设计
获取token 在做接口自动化的时候,经常会遇到多个用例需要用同一个参数token,并且这些测试用例跨.py脚本了. 一般token只需要获取一次就行了,然后其它使用unittest框架的测试用例全部 ...
- python接口自动化23-token参数关联登录(登录拉勾网)
前言 登录网站的时候,经常会遇到传token参数,token关联并不难,难的是找出服务器第一次返回token的值所在的位置,取出来后就可以动态关联了 登录拉勾网 1.先找到登录首页https://pa ...
- Python接口自动化——soap协议传参的类型是ns0类型的要创建工厂方法纪要
1:在Python接口自动化中,对于soap协议的xml的请求我们可以使用Suds Client来实现,其soap协议传参的类型基本上是有2种: 第一种是传参,不需要再创建啥, 第二种就是ns0类型的 ...
- python接口自动化(十)--post请求四种传送正文方式(详解)
简介 post请求我在python接口自动化(八)--发送post请求的接口(详解)已经讲过一部分了,主要是发送一些较长的数据,还有就是数据比较安全等.我们要知道post请求四种传送正文方式首先需要先 ...
- python接口自动化-Cookie_绕过验证码登录
前言 有些登录的接口会有验证码,例如:短信验证码,图形验证码等,这种登录的验证码参数可以从后台获取(或者最直接的可查数据库) 获取不到也没关系,可以通过添加Cookie的方式绕过验证码 前面在“pyt ...
- python接口自动化-参数化
原文地址https://www.cnblogs.com/yoyoketang/p/6891710.html python接口自动化 -参数关联(一)https://www.cnblogs.com/11 ...
随机推荐
- Newbe.ObjectVisitor 0.4.4 发布,模型验证器上线
Newbe.Claptrap 0.4.4 发布,模型验证器上线. 更新内容 完全基于表达式树的模型验证器 本版本,我们带来了基于表达式树实现的模型验证器.并实现了很多内置的验证方法. 我们罗列了与 F ...
- Scrum 冲刺第七天
一.每日站立式会议 1.会议内容 1)进行每日工作汇报 张博愉: 昨天已完成的工作:与林梓琦同学完成发帖模块的交接 今日工作计划:完善发帖模块的点赞.上传图片功能 工作中遇到的困难:Mybatis的一 ...
- 使用eslint将项目中的代码修改统一的缩进
背景 继承了组里师兄师姐写的项目的前端代码,但是是两个人写的,有两格缩进的,有四格缩进的,有字符串外用单引号的,有用双引号的. 于是搜索了一下,可以用eslint强制转化. eslint在github ...
- 【C++】C++ new和malloc到底哪里不一样
作者:李春港 出处:https://www.cnblogs.com/lcgbk/p/14118782.html 目录 一.前言 二.new和malloc两者的区别 2.1 属性的区别 2.2 使用上的 ...
- SnowFlakeldWorker
SnowFlakeldWorker java /** * Twitter_Snowflake * SnowFlake的结构如下(每部分用-分开): * 0 - 0000000000 000000000 ...
- Spring Boot 2.4 对多环境配置的支持更改
在目前最新的Spring Boot 2.4版本中,对配置的加载机制做了较大的调整.相关的问题最近也被问的比较多,所以今天就花点时间,给大家讲讲Spring Boot 2.4的多环境配置较之前版本有哪些 ...
- Jmeter二次开发——基于Java请求
简述 这近几年,越来越多非http的协议需要进行性能测试,包括不仅限于各类rpc.mq.缓存等.对于这些协议,市面上可能没有现成的工具可以直接使用,这个时候,我们可以自己动手,通过编写相应的JavaS ...
- 持久层之 MyBatis: 第一篇:快速入门
MyBatis入门到精通 JDBC回顾 1.1.认识MyBatis 1.1.使用IDEA创建maven工程 1.2.引入mysql依赖包 1.3.准备数据 1.4 使用JDBC手写MyBatis框架 ...
- MySQL高可用(一)主备同步:MySQL是如何保证主备一致的
主备同步,也叫主从复制,是MySQL提供的一种高可用的解决方案,保证主备数据一致性的解决方案. 在生产环境中,会有很多不可控因素,例如数据库服务挂了.为了保证应用的高可用,数据库也必须要是高可用的. ...
- ThreadX——IPC应用之消息队列
作者:zzssdd2 E-mail:zzssdd2@foxmail.com 一.应用简介 消息队列是RTOS中常用的一种数据通信方式,常用于任务与任务之间或是中断与任务之间的数据传递.在裸机系统中我们 ...