线性dp 之 麻烦的聚餐
题目描述
为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐。每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想,所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的位置就归第2批就餐的奶牛了。
由于奶牛们不理解FJ的安排,晚饭前的排队成了一个大麻烦。
第i头奶牛有一张标明她用餐批次\(D_i(1<=D_i<=3)\)的卡片。虽然所有\(N(1<=N<=30000)\)头奶牛排成了很整齐的队伍,但谁都看得出来,卡片上的号码是完全杂乱无章的。
在若干次混乱的重新排队后,FJ找到了一种简单些的方法:
- 奶牛们不动,他沿着队伍从头到尾走一遍,把那些他认为排错队的奶牛卡片上的编号改掉,最终得到一个他想要的每个组中的奶牛都站在一起的队列。
- 例如
111222333或者333222111。
哦,你也发现了,FJ不反对一条前后颠倒的队列,那样他可以让所有奶牛向后转,然后按正常顺序进入餐厅。
你也晓得,FJ是个很懒的人。他想知道,如果他想达到目的,那么他最少得改多少头奶牛卡片上的编号。所有奶牛在FJ改卡片编号的时候,都不会挪位置。
输入格式
第1行:1个整数:N
第2...N+1行: 第i+1行是1个整数,为第i头奶牛的用餐批次\(D_i\)
输出格式
第1行: 输出1个整数,为FJ最少要改几头奶牛卡片上的编号,才能让编号变成他设想中的样子
样例输入
5
1
3
2
1
1
样例输出
1
数据范围与提示
【输入说明】
队列中共有5头奶牛,第1头以及最后2头奶牛被设定为第一批用餐,第2头奶牛的预设是第三批用餐,第3头则为第二批用餐。
【输出说明】
如果FJ想把当前队列改成一个不下降序列,他至少要改2头奶牛的编号,一种可行的方案是:
- 把队伍中
2头编号不是1的奶牛的编号都改成1。 - 不过,如果FJ选择把第
1头奶牛的编号改成3就能把奶牛们的队伍改造成一个合法的不上升序列了。
题解
本题的题意就是将序列改为不下降序列或者不上升序列,求出最少需要修改几次。
所以就很简单了,求出原序列中的最长不下降子序列的长度\(d1\)和最长不上升子序列的长度\(d2\)。然后计算,第一种改法需要\(n-d1\),同理的第二次改法需要\(n-d2\),然后在这两个值中取出一个最小值即可。
代码
首先直接动归,代码如下所示,然后呵呵,wa了。
#include<cstdio>
#include<iostream>
using namespace std;
const int maxn=30100,INF=0x3f3f3f3f;
int a[maxn],dp[maxn];
int main(){
int n;scanf("%d",&n);
for(int i=1;i<=n;++i)
scanf("%d",&a[i]);
for(int i=1;i<=n;++i)
dp[i]=1;
int ans=-INF;
for(int i=2;i<=n;++i)
for(int j=1;j<i;++j)
if((a[i]>=a[j]) && (dp[i]<dp[j]+1)){
dp[i]=dp[j]+1;
ans=max(dp[i],ans);
}
for(int i=1;i<=n;++i)
dp[i]=1;
for(int i=n-1;i>=1;--i)
for(int j=n;j>i;j--)
if((a[i]>=a[j])&&(dp[i]<dp[j]+1)){
dp[i]=dp[j]+1;
ans=max(dp[i],ans);
}
printf("%d",n-ans);
}
然后 \(n*log_n\)优化,上ac代码,ac的感觉真好。
#include<cstdio>
#include<cstring>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=30100;
int a[maxn],f[maxn];
int len1,len2;
int main(){
int n;scanf("%d",&n);
for(int i=1;i<=n;++i)
scanf("%d",&a[i]);
f[len1]=-1;f[++len1]=a[1];
for(int i=2;i<=n;++i) {
if(a[i] >= f[len1]) f[++len1]=a[i];
else{
int pos=upper_bound(f+1,f+len1+1,a[i])-f;
f[pos]=a[i];
}
}
memset(f,0,sizeof(f));
f[len2]=-1;f[++len2]=a[n];
for(int i=n-1;i>=1;--i){
if(a[i]>=f[len2]) f[++len2]=a[i];
else{
int pos=upper_bound(f+1,f+len2+1,a[i])-f;
f[pos]=a[i];
}
}
int ans=max(len1,len2);
printf("%d",n-ans);
}
线性dp 之 麻烦的聚餐的更多相关文章
- BZOJ_1609_[Usaco2008_Feb]_Eating_Together_麻烦的聚餐_(动态规划,LIS)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1609 给出一串由1,2,3组成的数,求最少需要改动多少个数,使其成为不降或不升序列. 分析 法 ...
- BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐
1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按F ...
- 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐
1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1010 Solv ...
- 线性dp
线性dp应该是dp中比较简单的一类,不过也有难的.(矩乘优化递推请出门右转) 线性dp一般是用前面的状态去推后面的,也有用后面往前面推的,这时候把循环顺序倒一倒就行了.如果有的题又要从前往后推又要从后 ...
- 线性DP详解
顾名思义,线性DP就是在一条线上进行DP,这里举一些典型的例子. LIS问题(最长上升子序列问题) 题目 给定一个长度为N的序列A,求最长的数值单调递增的子序列的长度. 上升子序列B可表示为B={Ak ...
- DP基础(线性DP)总结
DP基础(线性DP)总结 前言:虽然确实有点基础......但凡事得脚踏实地地做,基础不牢,地动山摇,,,嗯! LIS(最长上升子序列) dp方程:dp[i]=max{dp[j]+1,a[j]< ...
- HDU 1069 Monkey and Banana(线性DP)
Description A group of researchers are designing an experiment to test the IQ of a monkey. They wi ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- Codeforces 176B (线性DP+字符串)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...
随机推荐
- 机器学习——打开集成方法的大门,手把手带你实现AdaBoost模型
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第25篇文章,我们一起来聊聊AdaBoost. 我们目前为止已经学过了好几个模型,光决策树的生成算法就有三种.但是我们每 ...
- [白话解析] 通过实例来梳理概念 :准确率 (Accuracy)、精准率(Precision)、召回率(Recall)和F值(F-Measure)
[白话解析] 通过实例来梳理概念 :准确率 (Accuracy).精准率(Precision).召回率(Recall)和F值(F-Measure) 目录 [白话解析] 通过实例来梳理概念 :准确率 ( ...
- 能被 K 整除的最大连续子串长度
[来源]网上流传的2017美团秋招笔试题 [问题描述] 两个测试样例输出都是5 [算法思路] 暴力解法时间会超限,使用一种很巧妙的数学方法.用在读取数组arr时用数组sum记录其前 i 项的和,即 s ...
- 多语言工作者の十日冲刺<8/10>
这个作业属于哪个课程 软件工程 (福州大学至诚学院 - 计算机工程系) 这个作业要求在哪里 团队作业第五次--Alpha冲刺 这个作业的目标 团队进行Alpha冲刺--第八天(05.07) 作业正文 ...
- weui上传多图片,前端压缩,base64编码
记录一下在做一个报修功能的心路历程,需求功能很简单,一个表单提交,表单包含简单的文字字段以及图片 因为使用的是weui框架,前面的话去找weui的表单和图片上传组件,说实话,weui的组件写的还不错, ...
- IE对于input checkbox onclick方法显示不支持此对象和方法的解决方案
网站注册页,协议结束后,通过input checkbox勾选,进行下一步,FF没问题,IE一直显示不支持此对象和方法. 网上查找大部分说函数名称与系统函数重名,而事实上不是. <div name ...
- Spring Boot]SpringBoot四大神器之Actuator
论文转载自博客: https://blog.csdn.net/Dreamhai/article/details/81077903 https://bigjar.github.io/2018/08/19 ...
- webpack4.*入门笔记
全是跟着示例做的.看下面文章 入门 1.nodejs基础 http://www.runoob.com/nodejs/nodejs-tutorial.html 2.NPM 学习笔记整理 https:// ...
- TreeMap实现
- 超简单集成ML kit 实现听写单词播报
背景 相信我们大家在刚开始学习一门语言的时候都有过听写,现在的小学生学语文的时候一项重要的课后作业就是听写课文中的生词,很多家长们都有这方面的经历.不过一方面这种读单词的动作相对简单,另一方面家长 ...